
J_., ij /

NASA Conference Publication 10115

A NASA-Wide Approach
Toward Cost-Effective,
High-Quality Software

Through Reuse

0

N
N
I

t_

Z

_0

U
C

LLJ

LLI
f'C_

UJ
_,"r

Wb-.o_

b..,_O

I t_"_

_/_UJ
'_ I LU
Z I'- O_

L..)V-
U..

C) OF"_
,'_ k- _"_ N
I ..Jr-_

I _G'J,'_

p..
_O
_D
,,O
4"

0

_0

0

Edited by

Charlotte 0. Scheper
Research Triangle Institute

Research Triangle Park, North Carolina

Kathryn A. Smith

Langley Research Center

Hampton, Virginia

Proceedings of the Second NASA
Workshop on Software Reuse held at

Research Triangle Institute

Research Triangle Park, North Carolina

May 5-6, 1992

JANUARY 1993

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

Contents

I Introduction 1

1 S1.1 Mission and Goal 2

1.2 Customers and Sponsors 3

2 Technical Rationale

'2.1 Benefits

2.2 Problems and Barriers

2.3 Technical Approach

2.3.1 Process

2.3.1.1 Business Process

2.3.1.2

2.3.1.3

2.3.1.1.1

2.3.1.1.2

2.3.1.1.3

Business Analysis

Incentives for Reuse

Management Policy

Engineering Process

2.3.1.2.1 Domain Engineering

2.3.1.2.2 System Engineering

2.3.1.2.3 Software Engineering

Legal Issues

2.3.1.3.1 Acquisition Policy

2.3.1.3.2 Capitalization Policy

5

5

5

7

7

9

9

9

9

i0

i0

II

II

II

II

12

p.i

2.3.1.3.3 Liability

2.3.2 Technology

2.3.2.l Engineering Methods

.) ,,,.3.2. I. l Object-Oriented Methods

1.2 Generw Assets'2.3.2. ' ' "

'2.3.2.1.3 Megal)rogramming

2.3.2.2 Libraries

2.3.2.3

2.3.2.2.1

2.3.2.2.2

2.3.2.2.3

2.3.2.2.4

User Interfaces

Asset Classification

Asset Management

Library [nteroperability

Measurement

12

12

12

13

13

14

14

15

15

16

16

16

2.3.2.3.1 Certification Metrics 16

2.3.2.3.2 Experience Metrics 17

2.3.3 Assets 17

2.3.3.1 Life-cycle Products 17

'2.3.3.'2 Captured Knowledge 18

2.4 State-of-the-Art 19

2.4.1 Current Status of NASA Efforts 19

2.4.2 Assessment of State-of-the-Art 24

3 Proposed Actions 37

p. ii

References 38

Appendix A: Workshop Participants 39

Appendix B: Viewgraphs Presented at Workshop 42

J,,

p. lll

List of Figures

2.1 Current Status of NASA Efforts

2.1 Current Status of NASA Efforts (Continued)

2.1 Current Status of NASA Efforts (Continued)

25

26

27

p. iv

List of Tables

1.1 NASA Headquarters Customers (C) and Sponsors (S) in Software Reuse

Efforts

2.1 The Software Reuse Problem Space 8

2.2 Technical Contacts for NASA ReuseTools 19

p. V

1. Introduction

NASA Langley Research Center (NASA Langley) sponsored a workshop on Soft-

ware Reuse Tools on May 5-6, 1992, at tile Research Triangle Institute (RTI) in

Research Triangle Park, North Carolina. The workshop was hosted by RTI and

led by Kathryn Smith of NASA Langley. Participation was by invitation only and

included representatives from four NASA centers (Langley, the Jet Propulsion Lab-

oratory, Goddard, anti Johnson), COSMIC, the Air Force's Rome Laboratory, and

DARPA's STARS/ASSET program. A complete list of the participants is included

in Appendix A of this report.

The primary purpose of this workshop was to exchange information on software reuse

tool dt,velopment, particularly with respect, to tool needs, requirements, and effec-

tiveness. The objectivt..'s of this information exrhange were to 1) identify critical

issues and needs in software reuse and 2) identify opportunities for cooperative and

collaborative research by addressing the following questions:

• How is software reuse defined?

• What are NASA's requirements?

• What will be the benefits?

• What needs to be done?

• How can results be quantified?

The participants in the workshop presented the software reuse activities and tools

I,cing ,h,veloped and used I,y their individual c_.nters and programs. These programs

a_htr_,ss a range of reuse issu_: the creation, management, and use of repositories

(or libraries); library interoperability; domain analysis; and component certification.

Viewgraphs from the presentations are included in Appendix B of this document.

The participants of this workshop agreed that NASA is faced with increased con-

struction and use of software at a time when software development costs are rising

and budgetary resources are shrinking. This increased need is due in part to the

exponential growth in the amount of data resulting from NASA missions that must

be processed and analyzed as well a.s to the growth in software needs to conduct, con-

trol, and manage the missions themselves. Producing software becomes more difficult

and more costly as software becomes more complex, documentation becomes more

p. 1

intricate, and technology undergoes rapid change. The participants concluded that a

concvrted effort to promote and enable software reuse is required to accomplish cost-

effective software development under these c_)nditions. This report summarizes the

workshop findings and presents the group's plan for defining the goals and objectives

for NASA-wide coordination of software re_lse activities.

1.1. Mission and Goals

The mission of the group's proposed software reuse activities is to facilitate the con-

struction and use of high-quality, cost-effective software. It proposes to accomplish

this mision by creating a quality-conscious reuse environment at NASA that builds

on the agency's past achievements in software development to accomplish today's

missions.

Reuse is a proces._ by which components created by activities in one software develop-

ment effort are used again, with or without modification, in other software develop-

Inent (.fforts. Components include artifacts from all a_spects of software development.

Th(_s,' artifacts can be requirements, specifications, designs, code modules varying

from low-level subroutine modules to stand-alone modules to complete subsystems,

interface requirements, revision histories, component- and system-level test cases, his-

torical performance metrics of usage and failure rates, development standards, and

risk information. Activities include the complete range of development and mainte-

nance activities, such as requirements analysis, design, implementation, testing, field

operations, and maintenance modifications. Process includes both the creation of

components that are capable of being reused as well as the actual reuse of compo-

nents. It encompasses identification, construction, verification, storage, retrieval, and

modification of components.

The group ha.s four specific goals for its reuse activities:

1. Enable NASA missions in the era of very limited resources. This goal

specifically addresses supporting the smaller, low-cost missions. The proposed

reuse effort will accomplish this goal by putting into place a mechanism to build

software better, faster, and cheaper than can currently be done.

'2. Promote and improve quality in NASA software products and pro-

cesses. Two aspects to accomplishing this goal are the application of TQM

principles to foster a quality-conscious environment, and the development and

p. 2

3.

use of the processes and metrics necessary to achieve a higher SEI (Software

Engineering Institute) software capability rating.

Preserve, package, and exploit NASA's software legacy. This goal will

be accomplished by establishing a reuse environment that allows components

fronl existing systems to be reused, that, applies lessons learned from one system

development to another, and that promotes interoperability among new and

existing systems.

Foster a pervasive culture of software reuse within NASA. S_lch a cul-

ture is an integral part, of creating a successful reuse environment. This goal

can be accomplished through education and coordination. In the area of educa-

tion, this proposed effort will seek to improve awareness of software reuse and

to educate current az_d future engineers and managers. In the area of coordina-

tion, it will work to increase collaboration across NASA and to formalize and

incorporate reuse into the NASA software life-cycle process.

1.2. Customers and Sponsors

Y_tbl, 1.1 identifies Nasa Headquarters customers and sponsors having an existing or

pot eT_tial interest in software reuse efforts.

p. 3

T_d_h' !.!. NASA tle_M,II_arters Cusl,,mwrs ((',) and Sponsors (S) in Software

Reuse Efforts

HQ Code Contacts Areas

RC (S) Lee Holcomb HPCC, CAS, ESS

RJ (S) Kristin Hessenius Aero R&T

RS (S) Sam Vernneri Space R&T

SMI (C/S) Joseph Bredenkamp Data Management

SZE (C) Guenter Reigler Astrophysics

SE EOS

SS Space Physics

SL Planetary

SB Life Sciences

SN Microgravity

C,U (S) Frank Penaramla Technology Transfer

QE (S/C) Don Sova Technical Standards

QR (S/C) Alice Robinson

p. 4

2. Technical Rationale

2.1. Benefits

Results from a market analysis conducte_t fl,r the ASSET repository were discussed

at the workshop. This analysis determined that tile perceived benefits of reuse are,

in order of priority, improved cost/productivity, reduced development time, increased

quality, and increased competitiveness. The surveyed users thought that the reuse

approach would provide an improved development environment where prototyping,

dew,lopment, modification, and porting could be accomplished efficiently and more

successfully. They also felt that it would provide better communication among the

st,aft involved in the development. These improvements would lead to the projected

cost/productivity and development time gains. The users felt that the quality and

reliability of the software would be improved, without increasing development costs,

duc to the increased testing and easier maintenance that reuse would provide. Finally,

they felt that the ability to produce higher quality software at less cost would let them

bring a better product to the market faster than their competitors.

The findings of this market analysis agree with the general consensus that cost savings

can Iw realized through increased software reuse. These cost savings result not only

from the reuse of code, but also from the retention of software engineering knowledge

and experience in a database that others can access. This allows improvement of the

dew_lopnwnt process by building on past experience and lessons learned. In fact, it

is now thought that the greatest benefits will probably be realized by reusing more

abstract artifacts of software development than code modules, including artifacts from

the process, design, and model levels [1].

2.2. Problems and Barriers

Before software reuse can be a practical reality, several issues relating to quality, cost,

and usability must be resolved [2,3,4]. The goal of reusable software is to cut costs,

but, depending on the application and system, this may not always be the case [5].

Practically, component retrieval costs shouht be less than component development

costs. A previous NASA workshop [6] concluded that there was a need for economic

models of reuse that could quantify the cost tradeoffs, identify the cost factors, and

allow the calculation of how many times a component must be reused to justify the

p. 5

cost of creating and reusing it.

Tl_e ASSET market analysis concluded that barriers to software reuse exist in the

lack of mature processes, standards, and tools for reuse; company cultures and atti-

tudes based on current software development processes; the front-end investment cost

of _lesigning reusable software; unresolved legal issues such as intellectual property

rights, licetlsing and contractual issues, anti product liability; and a lack of component

slq-_pliers, maintenance and support, and concern.

The fi_llowing additional items were identified as potential barriers to reuse by the

participants of this workshop:

• The need fi;r systems with unprecedented requirements

• Limited information access mechanisms

• The perception that building new software is faster than searching, identifying,

retrieving, understanding, and modifying existing software objects

• A lack of methods/procedures for reuse

• No ('OllllllOll enviroument for reuse

• A lack of management support

• A lack of successful case studies

• Inertia

p. 6

2.3. Technical Approach

The proposed effort to promote and enable software reuse throughout NASA requires

a coordinated attack on a broad set of entrenched, interrelated problems. The problem

sl)a,'e is described in Tal,le 2.1.

Witltin each of these prtA_lem areas, progress can be made by pursuing all or some of

the following seven activities:

1. Define solution approach

2. Evaluate feasibility

3. Build prototype/product

4. Agree upon broad standards

5. Train

6. Distribute

7. Commercialize - enlist industry support,

A matrix in which the probh'm areas are listed down the side, and the solution activ-

ities along the top, provides a framework for assessing progress towards widespread

software reuse. In the following subsections, each problem area is briefly described.

In the next section, the state-of-the-art at NASA is examined by filling in the matrix

with activities currently being pursued by NASA centers.

2.3.1. Process

Achieving widespread software reuse is not simply a technological problem, nor is it

simply a matter of creating and collecting a large number of reusable assets. A reuse-

based approach to software engineering requires a change in the processes followed by

all parties involved. This includes not only engineering processes, but also investment,

acquisition, and management processes. Each of these areas presents obstacles to

reuse which must be overcome. By addressing them in terms of the roles involved,

the authority and interrelationships of these roles, and the procedures they would

follow in a reuse-based development context, an Operations Concept of reuse can

p. 7

I-

Table 2.1. The Software Reuse Problem Space

. Process

1.1

l.l.1

1.1.2

1.1.3

1.2

1.2.1

1.2.2

1.2.3

1.3

1.:3.1

1.3.2

1.3.3

Business Process

Market Analysis

Incentiw_s for Reuse

Managem¢,!lt Policy

Engineering Process

Domain Engineering

System Engineering

Software Engineering

Legal Issues

Acquisit'ion P0iicy"

Capitalization Policy

Liability I

2: Technology '"

Engineering Methods

Object- Oriented Methods

2,1

2.1.1

2.1.2

2.1.3

2.2

2.2.I

2.2.2

2.2.3

2.2.4

2.3

2.:1.1

2.3.2

Generic Assets

Megaprogramming

Libraries

User Interfaces

Asset Classification

Asset Management

Library Interoperability

Measurement

Certification Metrics"

Experience Metrics
/ , . '"=i

3. Assets

I

3.1

3. l.1

3.1.2

3.1.3

3.1.4

3.1.4

3.1.4

3.2

3.2.1

3.2.2

3.2.3

Life-cycle Products

Requirements

Designs

Code

Test Procedures

User Guides

Other Life-cycle Products

Captured Knowledge
Reuse Guidance

Reuse Experience

Process Models
, 7 L

p, 8

be developed that can serve as a statement of vision against which progress can be
measured.

2.3.1.1. Business Process

This category refers to the set of problems concerning the financing, acquisition, and

management of reusable software and of software developed by means of large-scale

reuse. It includes such issues as rights retained on reusable assets, royalty structures

for the use of such assets, and liability for defects in the assets.

2.3.1.1.1. Business Analysis

The economics of reuse are not straightforward. Models of the return on investment

have been developed which show the extent of reuse necessary to justify an initial

investment in developing reusable software. Market analysis is necessary in order to

estimate whether the projected reuse is a reasonable expectation in a given domain.

2.3.1.1.2. Incentives for Reuse

Current Government acquisition policies, as stated in the Federal Acquisition Reg-

ulations (FAR), tend to discourage reuse. For example, if a company cannot retain

the rights to reusable software incorporated in a Government system, then there is

no incentive for the company to invest the extra resources that reusable software re-

quires. Similarly, development of reusable software under a Government program is

implicitly discouraged, since such development requires additional resources and can

drive up the cost of a single system.

2.3.1.1.3. Management Policy

Reuse-based software development requires a shift of management priorities away

from "whatever it takes to make this project succeed" to a longer-term vision encom-

passing many projects. A domain orientation, which sees the development of a single

system as one instance in the development of many similar systems, is thus required

not just by engineers but also by management.

p. 9

2.3.1.2. Engineering Process

This category refers to the technical procedures followed by software engineers through-

out the development life cycle. Experience has shown that large scale reuse is not

achieved by simply making libraries of reusable components available to developers,

with no corresponding changes in the processes the developers follow. The "not in-

vented here" (NIH) syndrome and various other obstacles to reuse necessitate a new

understanding of what it means to develop software. This new understanding is en-

capsulated in the term Domain Engineering, which must now be added to the familiar

concepts of system and software engineering.

2.3.1.2.1. Domain Engineering,

A domain is a family of similar systems. It corresponds to a familiar application area

or technical area, such as avionics systems, satellite systems, accounting systems,

database systems, communications systems, etc. Domains can contain subdomains,

which represent standard parts of a complex system (for example, the ground segment

of a satellite system).

Domain engineering is a discipline that stems from tile fact that, within a given

domain, the same techniques, design alternatives, tradeoffs, rules of thumb, testing

approaches -- and other aspects of the engineering process -- are frequently encoun-

tered again and again. Whether there is a formal "software reuse" program in place

or not, the most effective engineers informally reuse the knowledge and techniques

that they have built up through experience. Domain engineering seeks to systematize

this process and make the legacy of built-up knowledge available to all members of a

development team.

Domain engineering is an approach to developing systems by exploiting similarities

within a given domain. Individual systems in a domain are developed by instan-

tiating a generic architecture, which describes the common structure of systems in

the domain. A good generic architecture also identifies the ways in which individual

systems can vary; ideally, it provides an easily used mechanism, such as parameter

instantiation, for describing the unique aspects of a new system. Through the use of

the generic architecture and its instantiation mechanism, the development of strictly

new software is kept to a minimum.

Domain engineering is intrinsically evolutionary: each new application yields expe-

rience that is fed back into the domain model (which consists of the generic archi-

p. 10

tecture as well as the techniques and supporting knowledge necessary for using the
architecture). This feedback means that the domain model -- which is a model of
recommended engineering practice within the domain -- continually changes as re-
quirements become more and more complex, and as improved solution techniques are
discovered.

2.3.1.2.2. System Engineering

Decisions made during the system design process (for example, partitioning decisions

and processor allocation decisions) can impact the feasibility of reuse during soft-

ware development. Thus, the concepts of reuse and domain engineering need to be

integrated into the systems engineering process as well.

2.3.1.2.3. Software Engineering

Developers must be trained to view reuse not just as an ad hoc labor-saving technique,

but as part of an overall engineering discipline that minimizes risk by building on past

experience. Reuse must not be relegated to the coding phase of a project. It is equally

(perhaps more) important in the earlier life-cycle phases, i.e., requirements analysis

and design, and can be effectively applied in other activities such as test planning

and test development as well.

2.3.1.3. Legal Issues

This category refers to a range of problems that arise when reuse is attempted be-

tween organizations (e.g., Government and industry). Changes are required in the

Government's acquisition policies as well as in the laws governing rights to software

in the commercial arena.

2.3.1.3.1. Acquisition Policy

As already mentioned, the FAR tends to discourage reuse on the part of Government

contractors. Provisions need to be made for the retention of rights to reusable software

incorporated in a Government system. In addition, the way in which software is

p. ll

maintained may need to change, as source code for proprietary components may not

be made available to a maintenance contractor.

2.3.1.3.2. Capitalization Policy

Investment in the development of reusable assets would by encouraged by a modified

accounting system, in which newly written software could be amortized over a longer

period of time than its development period. This would to some extent mitigate the

additional expense of developing software to be reusable.

2.3.1.3.3. Liability

As software assets come to be treated more as commercial products, the question

of liability for errors arises. The question is intrinsically complex because the con-

text in which an asset is intended to be reused is typically not completely defined

('formal specification is not yet widespread in the software industry). Certification is

an approximate process. The question becomes even more complex when there are

multiple layers of reuse, e.g., component A from organization A is reused in tool B

from organization B, which is reused in system C for organization C.

2.3.2. Technology

The technological problems have been addressed more extensively, to date, than the

process issues. A great deal of progress has been made in our understanding of

how to develop assets that are reusable, and how to organize and present these for

easy location and access by developers. Less progress has been made in the area

of measurement, i.e., how do we assess the success of a reuse program? Neverthe-

less, significant technical problems remain in all three areas of engineering methods,

libraries, and measurement.

2.3.2.1. Engineering Methods

Creating reusable assets is a technical challenge because software requirements con-

tinually evolve. Designing for reuse requires the ability to predict how requirements

p. 12

will changeover time, and in what different contexts an asset will have to be reused.
The basic software engineering goals of modularity and encapsulation improve the
chances of reuse but do not by themselves solve the problem. In fact, none of the
methods discussedbelow solves the problem, but they represent significant progress
in our understanding of what makes software reusable.

2.3.2.1.1. Object-Oriented Methods

Data encapsulation and information hiding are basic techniques that aid in the defini-

tion of components that are loosely coupled to their environment (and can therefore

be reused in other environments). Decomposing software in terms of "objects," which

represent the entities or important "things" in a given domain, has turned out to be

a systematic way of achieving data encapsulation and information hiding. This is

known as object-based software development. Object-0riented development goes one

step further by organizing objects into classes and subclasses. Members of a subclass

inherit attributes and capabilities from the parent classes. Inheritance has been ad-

vocated as a means of achieving reuse: by llaving an object inherit functions from

a parent class, a developer does not have to re-implement them in the subclasses.

However, systematic use of inheritance has also led to difficulties in reuse and main-

tenance, which have been documented in the object-oriented programming literature

(e.g., the proceedings of the Object Oriented Programming, Languages, Systems, and

Applications -- OOPSLA -- Conferences). The difficulties stem primarily from the

dependencies of a subclass on its parent classes. These dependencies work against

the encapsulation (localization) of information that are a hallmark of good software

engineering.

Organizing objects into classes and subclasses can be a useful tool in understanding

a problem domain during the analysis and design phases, even if inheritance is not

in_plemented in the programming language used. Overall, there is a consensus in the

software engineering community that object-orientation supports the development of

reusable software. Unfortunately, there has been very little empirical measurement

performed to test this belief.

2.3.2.1.2. Generic Assets

Languages such as Ada (and now C++) allow for the definition of components that

are generic, in that they are parameterized to allow their use in different contexts.

p. 13

For example, a generic list package may be used to manage lists of different types of
objects: the generic package is instantiated according to the particular object type
to be supported in a given application.

Recently, the notion of a generic asset has been extended to encompass more than
code components. Software engineers now speak of generic architectures for certain
types of systems (this is the thrust of a major DARPA program - Domain Specific
Software Architectures). In the context of domain engineering (seeSection 2.3.1.2.1),

we can even speak of generic requirements specifications.

Class hierarchies and generic assets are two methods of building in variability, so as

to increase the chances of an asset being reused. In a class hierarchy, variation is

accommodated by the range of subclasses of a given parent class (e.g., the varieties

of a window in a windowing system). In a generic asset, variability is accommodated

by means of parameters that must be instantiated in order to use the asset.

2.3.2.1.3. Megaprogramming

Megaprogramming refers to the idea of building software systems out of large building

blocks, each of which represents a rich capability in its own right. The consensus in

the software engineering community seems to be that this can be achieved in domain-

specific contexts, where the typical architecture and building blocks of a system are

well understood. Megaprogramming is, for this reason, very closely related to domain

engineering.

In domains where there is a great deal of commonality from one system to another,

the synthesis of the building blocks into new systems can often be described in terms

of a very high-level language (VHLL); for example, architecture diagrams that re-

fer to well-known subsystem implementations. Automated code generation plays an

increasingly important and feasible role in this context to create the code that ties

together the specified building blocks.

2.3.2.2. Libraries

Most of the research and development in software reuse has concentrated on the

development of library systems. There are numerous issues remaining to be resolved

concerning the best way to present information to the user, the most effective ways

of organizing a library to facilitate finding desired assets, and the ability of multiple

p. 14

libraries to interoperate in a seamless fashion despite differences in their internal
storage procedures and user interfaces.

2.3.2.2.1. User Interfaces

The overall problem here is to prevent a user from being overwhelmed by massive

amounts of information while providing access to the assets that will meet his/her

current requirements. The advent of graphics/'windowing systems and of hyper-

text/hypermedia systems has opened many new possibilities for presenting inform0.-

tion to the user. In addition to query-driven database searches, some systems now use

hypertext techniques that allow users to browse or navigate through the contents of

a library, following reference or similarity links from one asset to another. Graphical

interfaces can show "neighborhoods" of closely related assets, allowing the user to

grasp the overall content of the fibrary in a visual manner.

2.3.2.2.2. Asset Classification

This problem bears directly on the ease with which users can locate assets meeting

their requirements. Assets may be classified hierarchically, as in a tree structure, or by

means of facets, which are independent attributes of an asset (e.g., function, author,

programming language, etc.). Both overall methods present problems. Hierarchical

schemes have been used in object-oriented programming systems such as Smalltalk,

and have frequently proven difficult to use when the conceptual scheme assumed by

the creator of the library is markedly different from that of _the user. Faceted systems

are frequently limited to describing superficial characteristics of an asset; for example,

the function of a component may be described in a manner that leaves may questions

about the operation of the component unanswered.

In addition to problems with both methods of classification, determining the specific

classification of an asset is inherently problematic. The name that one person uses to

describe a function may be different from the name used by someone else. Support

for synonyms and similarity is therefore desirable.

p. 15

2.3.2.2.3. Asset Management

Software evolves, and not all reuse will be verbatim reuse. There will be circumstances

in which modified assets are submitted to a library for inclusion as a variant to the

original on which it is based. In addition, if problems with reuse are reported, it

may be necessary to maintain software stored in a reuse library. These and other

circumstances create a problem of managing the assets in a library. Procedures and

supporting technology are needed for configuration control, access control, and similar

asset management tasks.

2.3.2.2.4. Library Interoperability

Widespread sharing of information among software engineers will require the ability

of libraries to interoperate, so that requests at one library system can be satisfied by

retrieving assets from another, perhaps geographically remote, system. The Reuse

Library Interoperability Group (RIG) is currently addressing this problem.

2.3.2.3. Measurement

This area has received the least attention of all the technological aspects of reuse,

and yet it is crucial to achieving any kind of objective success.

2.3.2.3.1. Certification Metrics

Various schemes have been proposed for annotating reusable assets with a certifica-

tion measure -- a description of tile confidence the library management has in the

correctness and quality of the asset. Because quality is not a precisely defined con-

cept in software (it has different meanings on different projects), and because in the

absence of formal specifications even correctness is not precisely defined, certification

must be viewed as an approximate indicator rather than an absolute seal of approval.

Methods for certifying reusable assets will evolve as testing theory, use of formal

methods, and approaches to quality assurance evolve.

p. 16

2.3.2.3.2. Experience Metrics

This category refers to the collection of measurements concerning the practice of reuse.

These measurements may include how much software from a library is being reused,

what percentage of new systems consists of reused code, how many successful vs.

unsuccessful searches there have been in a library system over a given period of time,

how many errors have been encountered in reused assets, how many modifications

have been necessary in reusing an asset, what kinds and frequencies of problems have

been encountered in reusing various assets, etc.

Information gathered from such measurements can be used to refine the organization

of a library, improve the procedures for using the library, improve other aspects of

the software development process, filter out unneeded or substandard assets from

a library, and in many other ways contribute to an ongoing process improvement

program.

2.3.3. Assets

The development of a sizable store of reusable assets is, obviously, key to a successful

reuse program. There are two main points to be made: 1) we should be thinking of

reusing life-cycle products in general, not just code, and 2) we can (and must) reuse

knowledge that has accrued over the years of developing systems in a domain.

2.3.3.1. Life-cycle Products

Many products created over the course of tile software development life-cycle can

be reused effectively in future systems. Many researchers in the field have come to

the conclusion that reusing code without reusing requirements, specifications, and

designs will never lead to more than ad hoc reuse. It is the requirements and design

that establish the context for code components -- for example, the interfaces --

a context that is either consistent or inconsistent with the assumptions of existing

code components. Thus, it is in the requirements analysis and design phases that

key decisions affecting the potential for reuse are made. To the extent that these

decisions are consistent with those made in the past (i.e., requirements and designs

are reused), the chances of successfully reusing code are increased.

In addition, there are the obvious economic benefits to be gained if a design specifi-

p. 17

cation, for example, can be created by means of a few modifications to an existing

document. This is also a means of reduci_g risk on a project, since the number of

decisions without precedent is reduced.

2.3.3.2. Captured Knowledge

It is sound engineering discipline to build on knowledge accumulated through prior

efforts, but relatively little attention has been paid to integrating this process into a

reuse framework. The advantage of doing so is that knowledge can be shared rather

than remaining in the mind of a single developer. A reuse program should therefore

look at ways of packaging previously accrued engineering knowledge so as to make it

available to the developers of new systems.

The 1990 report of the Computer Sciences and Technology Board (CSTB) of the

National Research Council strongly recommended the use of handbooks in specific

disciplines as a means of packaging and transferring this kind of knowledge (Commu-

nications of the ACM, March 1990). Such "handbooks" could in fact be on-line and

made available as part of a reuse environment, providing guidance on how to reuse

various assets, information about past experience in reusing specific assets (lessons

learned), and criteria for choosing reusable assets.

In addition, alternative process models, suitable for projects with different character-

istics (e.g., size, criticality, performance requirements, etc.), could be stored and made

available as part of this on-line database of knowledge. This knowledge would con-

stantly evolve as a function of the experience metrics collected (see Section 2.3.2.3.2).

In tile long run, the reuse of packaged knowledge of this sort can have a great impact

on software quality and productivity because they directly address the risk factors

associated with software development.

p. 18

2.4. State-of-the-Art

2.4.1. Current Status of NASA Efforts

The workshop identified current reuse activities at four NASA centers: Langley Re-

search (',enter, the Jet Propulsion Laboratory, Goddard Space Flight Center, and

Johnson Space Center. Tile tools resulting from these activities are described in the

following sections, and the technical points of contact are summarized in Table 2.2.

Table 2.2. Technical Contacts for NASA Reuse Tools

Technical Contact NASA Center Tools/Programs

Kathryn Smith

Randy VanValkenburg

Ed Ng

Walt Truszkowski

Mike Bracken

Charles Pitman

LaRC

LaRC

JPL

GSFC

GSFC

JSC

Eli (InQuisiX)

SEAL

HyLite

LEARN-92, KBSEE

KAPTUR

RBSE, REAP, SimTool, PCS/ESL

NASA Langley Research Center

The Eli Software Synthesis System is an automated set of cooperating reuse tools

that NASA Langley has been sponsoring. It is in its third phase of development, dur-

ing which it is being commercialized as lnQuisiX. The component tools are library

facilities to classify, store, and retrieve reusable components; design synthesis; com-

ponent checkout; file checkout; and Ada component metrics. Eli has been designed to

be tailorable to specific users needs. It supports user-defined component classes and

classifications and many types of attributes. The goal of this system is to automate

the development and use of reusable components to make software reuse easier to

accomplish.

Eli is an operational product, running under Xll on a Sun4. It has a window and

p. 19

menu-based user interface. It manages code, design, test case, and documentation
components and performs the complete set of library functions. Additionally, it pro-
vides facilities for integrating library components into new systems under develop-

ment.

Tile Software Engineering and Ada Laboratory (SEAL) at NASA Langley is involved

in a number of efforts that will facilitate the implementation of reuse in the software

development process. A domain analysis is underway that will identify the poten-

tial for reuse for the domain of interest to the SEAL. The SEAL is cooperating

with the hardware and systems engineering branches at Langley to document a sys-

tems engineering approach that includes participation of software engineers from the

earliest stage of development and that will advocate the development of standards

for hardware, limiting the options software has to address. An object-based design

methodology has been defined in the SEAL and many of the code modules actually

developed are in the form of reusable, generic Ada packages. Finally, the SEAL is

developing guidebooks for developing reusable Ada components/systems and for a

tailorable software engineering process.

The Jet Propulsion Laboratory

H_,Lite is an R&D activity of JPL that is producing a tool to facilitate the con-

struction of electronic libraries for software components, hardware parts or designs,

scientific databases, bibliographies, etc. HyLite evolved from a task formerly entitled

the Encyclopedia of Software Components (ESC) and its major area of applicability

has thus far been software resue. HyLite has a graphical user interface (GUI) to its set

of library functions. These functions include inserting new components and property

knowledge, browsing and searching databases, and retrieving software from selected

networks. It also contains a library of math software and a library of data structures

and algorithms.

HyLite has employed advanced technology in developing its component functions.

These technologies include object-oriented databases, semantic networks for classi-

• fication, and automatic GUI generation. The effort is currently addressing the use

of A I technologies for intelligent retrieval based on learning from experience, user

models, the correction and/or completion of retrieval statements, and suggestions for

alternative retrievals.

A prototype for beta testing exists for the color Macintosh. The prototype uses

SuperCard, Macintosh Allegro Common Lisp, Pixel/Paint Professional, Canvas 2.0,

and Think C to implement the system's functions. This prototype is currently being

ported to UNIX workstations running under XWindows and will be upgraded to

p. 20

r

include the AI technologies, a history mechanism, and more complete Hypertext

capabilities. Additional efforts are underway to adapt HyLite as a graphical front-

end for a national software exchange experiment, to adapt it as an intelligent front-end

to NAIF (a library of software tools and datasets for space flight navigation systems),

and to connect to NetLib. Initial preparations are being made for commercialization.

Goddard Space Flight Center

LEARN-92 (Learning Enhanced Automation of Reuse Engineering)is an experimen-

tal project that is using conceptual clustering techniques from artificial intelligence

to automatically develop a classification scheme for code components. This capabil-

ity would support the domain engineer, who must create a classification scheme for

components as part of the domain model. A prototype version of the tool is planned

to be completed by the end of September 1992.

LEARN-92 is intended to provide the software engineer with a classification of compo-

nents based on their role in the problem space (i.e., what problem they solve), rather

than the solution space (how they are implemented.) The inheritance hierarchy of an

object-oriented programming system, such as C++, provides a solution-space organi-

zation; this is often not very helpful to programmers who are searching for a reusable

component to perform a specific function.

LEARN-92 will provide an automated mechanism for hierarchical classification of

code components, based on faceted descriptions of these components. A unique aspect

of the faceted descriptions is that the facet space is extendible "on the fly" by the

user who is placing a component into the system. The user is encouraged, but not

required, to use existing facets in describing a new component. The focus in this

effort is on code components, but the classification mechanisms being implemented

in LEARN-92 could work for other forms of assets as well.

KAPTUR (Knowledge Acquisition for Preservation of Trade-offs and Underlying

Rationales) is a tool under development for preserving and building on NASA's en-

gineering legacy. It captures the engineering decisions/rationales that went into the

development of software assets and provides an easy-to-use environment for accessing

that knowledge. The functionality implemented by KAPTUR includes entering new

architectures, recording rationales, placing rationales within the context of an over-

all domain model, browsing alternatives, understanding decisions, and selecting for

reuse.

KAPTUR supports an approach to domain engineering in which assets are organized

in terms of their distinctive features, which represent key engineering decisions, and

p. 21

,w

=

which are justified by rationales. The approach is also distinguished by the fact

that it is case-based, i.e., actual legacy products are included in the database, not

just generic models for future use. KAPTUR's approach to asset classification uses

a typing structure including both domain-independent and domain-dependent asset

types. Within a type, assets are classified on the basis of their features. The KAPTUR

concept of feature is broader than that found in the Software Engineering Institute's

Feature-Oriented Domain Analysis (FODA) method. KAPTUR employs a novel user

interface approach which is based more on direct display and manipulation of the

database rather than queries. A hierarchical map of alternatives and a stack of pages

describing them are presented to the user in a window and menu-based format.

KAPTUR currently runs on a Sun SPARCS Station. Version 2.0 has been released,

following versions 1.0 and two earlier prototypes. The system is currently being

distributed to interested/potential users, and a training course on KAPTUR and

Domain Analysis is being developed. The developers of KAPTUR maintain that the

continuous feedback loop this type of system provides between the supplier of reusable

components and the user of those components is the key to successful reuse.

The KBSEE (Knowledge-Based Software Engineering Environment)is a prototype en-

vironment to support the production of new systems by configuring generic assets

stored in a domain model. It incorporates the Evolutionary Domain Life-Cycle

(FDL(',) model in which new systems are used to update the domain model to make

it more responsive to future requirements.

The KBSEE makes reuse the central activity of the software engineering process. De-

velopment is seen as a process of identifying the required features of a new system,

retrieving the assets possessing those features from the generic domain model, check-

ing the mutual consistency of the assets, and configuring them into the new system.

Specification of the required features is done by the developer; all the other steps are

performed by the KBSEE.

The domain model, as stored by the KBSEE, consists of a hierarchy of generic assets,

each of which possesses certain features that make it suitable or unsuitable for a

given application. The generic assets are created through the process of Domain

Analysis, which abstracts the functionality found in existing and planned systems in

the domain.

Assets are organized into whole-part and class-subclass hierarchies. In addition, assets

possess features (sinfilar to the notion of feature in the Software Engineering Insti-

tute's FODA method), which are used to determine which assets should be retrieved

to meet the requirements of a new system. Features are described as mandatory (must

p. 22

be present in any system), variant (one of several variants must be present in any

system), or optional (may or may not be present).

A prototype KBSEE has been developed, and its feasibility is now being tested in the

Payload Operations Control Center domain. The KBSEE effort has focused to date

on the storage of generic requirements specifications and the automated configuration

of requirements specifications for new systems based on the generic versions. This

supports a development process that consists of configuring assets each of which can

represent a complex capability in its own right. This highly automated concept of

software development supported by the KBSEE makes it suitable for megaprogram-

ruing.

Johnson Space Center

The NASA Repository - Based Software Engineering Program (RBSE) directed by

NASA Johnson Space Center has operated a prototype public-domain software reuse

library (AdaNET) since 1989. Updates to the AdaNET architecture, including high-

performance hardware and an open-systems-based library management system are

reversing a trend to degraded responsiveness and capability. The RBSE is commit-

ted tc_ making reuse part of the mainstream of software development practices and

is working to achieve this by delivering and supporting a robust set of products sup-

porting research to fill critical technology gaps, and adapting to changing customer

requirements. Through the Reuse Interoperability Group, RBSE is involved in de-

veloping standards for interoperability among government-funded reuse libraries, and

sees interoperability as key to expanding the base of library supphers and customers.

In addition to RBSE, NASA's Johnson Space Center supports several activities that

are related to software reuse. The Re-Engineering Application/Project (REAP) is

developing an integrated reengineering environment, including methods and tools. It

captures all code and as much as possible of other software life cycle products in

an electronic repository and provides analysis support for abstracting, grouping, and

structuring the information.

SimTool is also supporting the domain engineering process through the construction

of simulations of new applications based on a library of models from the domain.

Using SimTool's library of executive software components, application interfaces, and

math models, the user builds an application specification. This specification identifies

which components are to be integrated and how they relate to each other and the

simulation.

The Parts Composition System/Engineering Script Language (PCS/ESL)provides re-

p. 23

usable, domain-specific software parts, catalogs of parts, and libraries. The software

parts consist of primitive modules and drivers/graphs. This tool lets the developer

retrieve parts from the library and recombine or modify them into new, executable

applications. The modules and applications are represented in the library as graphs.

The ESL is a graphical language for composing complete applications from software

parts, and as such is one approach to megaprogramming. A prototype of this system

has been built and is being tested.

2.4.2. Assessment of State-of-the-Art

A problem area/solution activities matrix based on the framework described in Sec-

tion 9 '_.3 was created to determine and assess the current status of reuse activities

at the NASA centers. The participants at this •workshop filled in the matrix with

respect to the reuse activities and tools being pursued by their centers. These indi-

vidual results were then compiled into the matrix in Figure 2.1 using-t-he following

key to identify the individual tools:

Tool Name

1 Eli (InQuisiX)

2 HyLite

3 SEAL

4 RBSE

51 L EA RN-92

52 KAPTUR

53 KBSEE

6 RBSE, REAP, SimTool, PCS/ESL

Notes related to individual column entires are included after the table.

This matrix provides a snapshot of existing NASA reuse activities in a framework that

denotes their status with respect to the issues that this workshop identified as crucial

to the successful development of a NASA-wide reuse environment. This snapshot

clearly illustrates where NASA is now and provides a basis for determining where

future efforts should be directed in resolving these issues.

p. 24

X

Ill

rC
(I.

®

,i,

e" C_

m

m

< o.

.<

.,<
Z

r_

e,i

p. 25

i

_1_1o.oo1_olo_!:__i__!_:!;_!__l_t__1_

p. 26

®
'5

I.-.

X

oi!!
_ _. _._

-_'|
I-,- LLI Li.
I.kl

m

m

II1
m

e4 _'/ _ e4 m" cq

._ _ _

,d

°_

0

v

Z

,...;

o_

p. 27

PROCESS NOTES

Too!, :_: ¢4EAL

Cells 6G,J - The domain analysis of 13G should answer the market analysis question:

does the potential for reuse in our domain justify the cost of reuse efforts? See

133.

Cell 10I - SEAL management is committed to the "domain orientation," and we

are seeking to educate other areas of management via classes and informal

interactions.

Cells 13G,J - A "Domain Analysis" of the SEAL software application domain(s)

is being conducted to reveal the commonalities between development projects.

This is a deliverable under a task being conducted by the SEAL for the Code

QE Software Engineering Program.

Cells 15E,H - The SEAL is cooperating with LaRC hardware and systems engi-

neering branches to document a systems engineering approach that includes

participation of software engineers in the earliest stages. The SEAL advocates

limiting hardware choices, such as buses and microprocessors, to selections from

a small set of agreed upon standards. This will further promote reuse of software

components.

Cells 17G,H,I,J - These are addressed in Asset cells 23G,H,I,J. The referenced guide-

books will also cover the management and assurance processes.

Cell

Cell

8E - RBSE participates in the Reuse Acquisition Action Team, a group which

is focused on management/acquisition issues of reuse. It is sponsored by the

ACM/SIGAda Reuse Working Group. The group has strong support from

DoD's Executive Reuse Steering Committee and acquisition/policy officers from

Army, Navy and Air Force.

IOE - RAAT (See 8E)

Cell 13E - RBSE is active in developing the Software Engineering Institute's "Design
for Reuse Handbook." RBSE sponsored a workshop earlier this year at the

University of Houston, Clear Lake.

Cells 13-24J - AdaNET provides information about a range of reuse-related tech-
nical and non-technical issues. Information on these and other topics may be
available.

(',ell 20E - RAAT (See 8E)

Tool ,51" LEARN-92

Cell

Cell

13 - LEARN-92 is an experimental project that is using conceptual clustering

techniques from artificial intelligence to automatically develop a classification

scheme for code components. This capability would support the domain en-

gineer, who must create a classification scheme for components as part of the

domain model. A prototype version of the tool is planned to be completed by

the end of September 1992.

17 - LEARN-92 is intended to provide the software engineer with a classifica-

tion of components based on their role in the problem space (i.e., what problem

they solve rather than the solution space (how they are implemented). The

inheritance hierarchy of an object-oriented programming system, such as C++,

provides a solution-space organization: this is often not very helpful to pro-

grammers who are searching for a reusable component to perform a specific

function.

Tool 52: KAPTUR

Cell 13 - KAPTUR supports an approach to domain engineering in which assets

are organized in terms of their distinctive features, which represent key engi-

neering decisions and which are justified by rationales. The approach is also

distinguished by the fact that it is case-based, i.e., actual legacy products are

included in the database, not just generic models for future use.

KAPTUR 2.0 has been released, following version 1.0 and two earlier prototypes.

The system is currently being distributed to interested/potential users, and a

training course on KAPTUR and Domain Analysis is being developed.

p. 29

Tool 5_; KBSEE

Cell

Cell

13 - The KBSEE is a prototype environment intended to support domain

engineering; in particular, the production of new systems by configuring generic

assets stored in a domain model. It is based on an evolutionary concept of

domain engineering, in which new systems are used to update the domain model

to make it more responsive to future requirements. A prototype KBSEE has

been developed, and its feasibility is now being tested in the Payload Operations

Control Center domain.

17 - The KBSEE makes reuse the central activity of the software engineering

process. Development is seen as a process of identifying the required features of

a new system, retrieving the assets possessing those features from the generic

domain model, checking the mutual consistency of the assets, and configuring

them into the new system. Specification of the required features is done by the

developer; all the other steps are performed by the KBSEE.

Tool 6: Johnson Space Center Tools

Cell 13 - Domain Engineering - Two projects, ESL and SimTool, are investigating

various aspects of domain architectures and reuse, and are discovering implica-

tions for the domain engineering process.

Cell 17 - Software Engineering - Three projects, REAP, FPP, and ESL, are address-

ing aspects of the software engineering process:

(i) REAP (Re-engineering Application Project) is developing an integrated

re-engineering environment, including methods and tools.

(ii) FPP (Framework Programmable Platform) is focusing on the descrip-

tion, management, and control of the software development process within an

integrated life-cycle environment.

(iii) ESL (Engineering Script Language) is a graphical language for compos-

ing complete applications from software parts in a reusable hbrary, and it is

investigating a process for composing applications.

p. 30

TECHNOLOGY NOTES

Tool 1: Eli/lnQuisiX

(:',ells 13, 15, 17, 19;E-G - The Eli (InQuisiX (TM) Software Synthesis System in-

cludes a graphical user interface and a library system. The library system sup-

ports classification, retrieval and management of components. InQuisiX was

developed under an SBIR; the company is preparing a commercial product.

Cells 22E,F - Identify a set of measurable reuse attributes for object-oriented systems

and design a prototype tool to take these measurements.

Tool 2: HyLite

Cells 6F,G - Applying object-oriented DBMS methods for software reuse.

Cells 13F,G - Applying hypermedia technology.

Cells 15-19 F,G - Applying AI techniques for navigation in databases.

Cells 6E-K - An object-based design methodology has been defined in the SEAL.

Applied to a flight software project and pubfished in several papers. The guide-

books of Asset Cell 23G will define a suite of object-oriented methods to be

used in the SEAL for analysis, design, and implementation. Training in these

chosen methods will be given at LaRC. The SEAL provides feedback to software

development tool vendors about features that, are desirable.

Cells 8G-J - Many of the code modules developed in the SEAL are in the form of

reusable, generic, Ada packages. Ada has been adopted as the development

language for the SEAL. SEAL guidebooks for developing reusable Ada com-

ponents/systems (See Asset 19G) will be the basis of reuse training for new

personnel. The generic Ada packages will be made widely available via asset

repositories such as COSMIC and AdaNET.

p. 31

Cells 10F,G,I - The domain analysis of Process 13C will identify the feasibility of
megaprogramming in our domain by determining the common building blocks
in our systems. New systems will be megaprogrammed from existing reusable
assets, which have been designed with standard protocols, methodologies, and
hardware in mind.

(',ells 15E,G - The domain analysis of Process 13G will identify attributes and
facets of our domains that will enable us to develop classification schema for

our reusable assets. These schema will be initially implemented using the
ELI/ARCS reuse tool system developed under a LaRC SBIR.

Cell 24E - The SEAL will be identifying metrics to measureall aspectsof the software
development process, including reuse activities. These will be formalized in the
guidebooks of Asset 23G.

Tool 4; RBSE

Cells 6-24J - AdaNET provides information about a range of reuse-related tech-

nical and non-technical issues. Information on these and other topics may be

available.

Cell 13E - Trade study

Cell 13F - Feasibility study

Cell

Cell

Cell

Cell

Cell

13G - RBSE's operational reuse library component, AdaNET, has developed

and operated a prototype reuse library. The system is to be upgraded this fall.

System will include X-windows, MAC, and PC-based GUI.

15E - RBSE has sponsored work by Dr. David Eichmann and others to develop

lattice-based classification schemes of reuse libraries.

15G - AdaNET (see 13G).

17G - See AdaNET (see 13C).

19E - RBSE provides active support and leadership to the Reuse Library In-

teroperability Group, an organization developing consensus-based standards for

interoperability among government-funded reuse libraries.

p. 32

Ceil

Cell

Cell

Cell

Cell

19F - RBSE is holding discussions with another reuse library to prototype
interchange of assets.

19H- RIG (see 19E).

22E - RBSE has conducted trade studies on certification metrics.

22F - RBSE is evaluating the feasibility of certification metrics with off-the-shelf
tools.

24E - RBSE co-chairs the RIG technical subcommittee on metrics.

Tool 51:LEARN-92

Cell 15 - LEARN-92 will provide an automated mechanism for hierarchical classifi-

cation of code components, based on faceted descriptions of these components.

A unique aspect of the faceted descriptions is that the facet space is extendible

"on the fly" by the user who is placing a component into the system. The

user is encouraged, but not required, to use existing facets in describing a new

component.

Tool 52: KAPTUR

Cell

Cell

13 - KAPTUR employs a novel user interface approach which is based more on

direct display and manipulation of the database rather than queries.

15 - KAPTUR's approach to asset classification uses a typing structure includ-

ing both domain-independent and domain-dependent asset types. Within a

type, assets are classified on the basis of their features. The KAPTUR concept

of feature is broader than that found in the Software Engineering Institute's

Feature-Oriented Domain Analysis (FODA) method.

Tool 53: KBSEE

Cell 8 - The domain model, as stored by the KBSEE, consists of a hierarchy of

generic assets, each of which possesses certain features that make it suitable or

unsuitable for a given application. The generic assets are created through the

process of Domain Analysis, which abstracts the functionality found in existing

and planned systems in the domain.

p. 33

Cell 10 - The highly automated concept of software development supported by the

KBSEE makes it suitable for megaprogramming. The development process con-

sists of configuring assets each of which can each represent a complex capabifity

in its own right.

Cell 15 - Assets are organized into whole-part and class/subclass hierarchies. In

addition, assets possess features (similar to the notion of feature in the Software

Engineering Institute's FODA method), which are used to determine which

assets should be retrieved to meet the requirements of a new system. Features

are described as mandatory (must be present in any system), variant (one of

several variants must be present in any system), or optional (may or may not

be present).

Tool 6: Johnson Space (',enter Tools

Cell 6 - Object-oriented methods: one project, re-engineering the Mission Opera-

tions Computer to an object-oriented design, is evaluating the feasibility of us-

ing object-oriented technology in a previously assembly-language, mega-system

domain.

(',ell 10 - Megaprogramming: ESL is investigating exactly this type of problem, and

an entire prototype has been built and is being tested.

Cells 13-19- Libraries: NELS (NASA Electronic Library System) and RBSE (Repository-

Based Software Engineering) are related projects that are building a reuse li-

brary system that addresses many of the areas on this chart.

p. 34

ASSETS NOTES

Tool 1: Eli/lnQuisiX

Cells 6-16, E-G - The InQuisiX system supports the reuse of many types of compo-

nents including: designs, code, documentation and test procedures.

Tool 2: HyLite

Cells 6-14, F-G - Developing versatile system that can be used to manage and reuse

these types of assets.

Tool 3: SEAL

Cells 6G,H,J- 16G,H,J - The SEAL has adopted an "expansive" view of reuse, where

all products of the life cycle may be reused and composed of reusable products.

Assets will be developed following pertinent software, hardware, communica-

tions, and user interface standards. Documentation will follow the NASA Soft-

ware Documentation Standard. All assets will be made widely available via

asset repositories.

Cells 19G,J - A guidebook for developing reusable Ada components and systems will

be developed by the SEAL. This is a deliverable under a task being conducted

by the SEAL for the Code QE Software Engineering Program.

Cells 21G,J - A guidebook for transferring reusable Ada software in NASA will be

developed by the SEAL. This is a deliverable under a task being conducted by

the SEAL for the Code QE Software Engineering Program.

('Jells 23G-J - Tailorable software engineering process guidebooks are being developed

for the various SEAL software domains. These guidebooks will incorporate

standard, existing methodologies and tools as much as possible. Future training

for SEAL and other LaRC personnel will be tailored to these guidebooks. These

guidebooks are deliverables under a task being conducted by the SEAL for the

Code QE Software Engineering Program.

Additionally, an annual SEAL report is planned that will assess the scope,

development processes, and transfer mechanisms for reuse of software products

for NASA Ada projects.

p. 35

Tool 4: RBSE

Cell 6J - AdaNET (see Technology 13G).

Cell 8J - AdaNET (see Technology 13G).

Cell 10J - AdaNET (see Technology 13G).

(',ell 12J - AdaNET (see Technology 13G).

Cell 14J - AdaNET (see Technology 13G).

Cell 16J - AdaNET (see Technology 13G).

Too!. 51" LEARN-92

Cell 10 - The focus in this effort is on code components, but the classification

mechanisms being implemented in LEARN-92 c)uld work for 0the_forms of

assets as well. The emphasis is due to a current need within GSFC/Code 520,

where there is a growing collection of reusable C++ components being circulated

among developers, and a need to organize the components in a form that makes

it easy to locate reusable code.

T_9ol 52: KAPTUR

Cell 21 - KAPTUR provides a mechanism fo r th e rationales for various engineering

decisions to be recorded. These can include after-the-fact lessons learned fr0m

the particular decisions made.

Tool 53: KBSEE

Cell 6 - The KBSEE effort has focused to date on the storage of generic requirements

specifications and the automated c£9figurat!on of requirements specifications

for new systems based on the generic versions. The methodology encompasses

other life-cycle products as well.

p. 36

3. Proposed Actions

During the wrap-up session, the workshop participants discussed ways to leverage

their individual software reuse activities into a coordinated program to address NASA's

software development needs and to promote software reuse as an integral part of the

NASA software development process. The participants concluded that these objec-

tives can be accomplished by coordinating their software reuse activities and mar-

keting their activities to NASA Headquarters as a coordinated, focused program to

advance software reuse throughout the NASA community. The following preliminary

action items were agreed upon:

Use this workshop document as the basis for a proposal to potential sponsors.

Form a Software Engineering and Reuse Team focusing on NASA problems.

This team is to be led by either LaRC or ARC. Team members are to in-

clude ARC, LaRC, LeRC, GSFC, JSC, JPL, MSFC, HQ, Rome Laboratory

(Air Force), COSMIC, DARPA (ASSET), RBSE. This team should combine

with SATWG/

SAAP Software Engineering Subpanel, chaired by E. Fridge of JSC.

Determine customer needs for the near term. This will be accomplished by

looking at existing advocacy packages, by presenting current software reuse

activities to HQ, and by soliciting feedback from HQ.

Use Code R Block Grants as a mechanism to influence software reuse in univer-

sity curricula. Candidates are University of Illinois/Urbana-Champaign, Stan-

ford University, University of Maryland, and Harvey Mudd College.

p. 37

References

[1] James W. Hooper and Rowena O. Chester. Software Reuse: Guidelines and Meth-

ods. Plenum Press, New York, 1991.

[2] G. Caldiera and V. R. Basili. Identifying and Qualifying Reusable Software Com-

ponents. Computer, 24:61-70, February 1991.

[3] E. J. Joyce. Reusable Software: Passage to Productivity? Datamation, 34:97-98,

September 15 1988.

[4] B. d. Shelburne and M. J. Pitarys. Avionics Software Reusability Observations

and Recommendations. In Proceedings of NAECON, pages 614-619, 1991.

[5] T. Biggerstaff and C. Richter. Reusability Framework, Assessment, and Direc-

tions. In Proceedings of the Twentieth Annual Hawaii International Conference

on System Sciences, 1987.

[6] S.J. Voight and K. A. Smith. Software Reuse Issues. Conference Publication 3057,

NASA, November 17-18 1988. Proceedings of a Workshop held in Melbourne,
Florida.

p. 38

APPENDIX A: Workshop Attendees

p. 39

/

Wayne Bryant

NASA Langley Research Center

Mail Stop 478

Hampton, VA 23665-5225

804-864-1692

wayne@uxv.larc.nasa.gov

Kathryn Smith

NASA Langley Research Center

Mail Stop 478

Hampton, VA 23665-5225

804-864-1699

kas@csab.larc.nasa.gov

Floyd Shipman

NASA Langley Research Center

Mail Stop 478

Hampton, VA 2366-5225

804-864-1706

shipman@scab.laxc.nasa.gov

Randy Van Valken burg

NASA Langley Research Center

Mail Stop 125A

Hampton, VA 23665-5225

804-864-7933

vanvalke@voyager.larc.nasa.gov

Edward Ng

Jet Propulsion Laboratory

CIT

4800 Oak Grove Dr.

Pasadena, CA 91109

818-306-6166

MS 525-3660

edng@nasamail

edward..ng@isd.jpl.nasa.gov

Jim Golej

MITRE Corporation

Mail Code PT41

Houston, TX 77058

713-333-5020

Deborah Cerino

Rome Laboratory/C3CB

Griffiss AF Base, NY 13441

315-330-2054

cerino_softvax.rl.af.mil

Sidney Bailin

CTA, Inc.

6116 Executive Boulevard

Rockville, MD 20852

301-816-1451

sbailin@cta.com

Barry E. Jacobs

Code 934

Goddard Space Flight Center

Greenbelt, MD 20771

301-286-5661

bjacobs@nssdc.gsfc.nasa.gov

Scott Clark

COSMIC

University of Georgia

382 East Broad St.

Athens, GA 30602

404-542-3265

scott@cosmicl.cosmic.uga.edu

David Dikel

Applied Expertise

1925 N. Lynn St.

Suite 802

Arlington, VA 22209

703-516-0911

ddikel@ajpo.sei.cmu.edu

Charles W. Lillie

SAIC

1710 Goodridge Dr.

McLean, VA 22102

703-749-8732

liUiec@source.asset.com

p. 40

Jack Tupman

Jet Propulsion Laboratory

CIT

4800 Oak Grove Dr.

Pasadena, CA 91109

818-306-6182

MS 525-3660

jack@jade.jpl.nasa.gov

Joe Jupin

Jet Propulsion Laboratory

CIT

4800 Oak Grove Dr.

Pasadena, CA 91109

818-306-6161

MS 525-3660

joe_jupin@isd.jpl.nasa.gov

Charlotte Scheper

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709

919-541-7116

cos(_rti.org

Janet Dunham

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709

919-541-6562

jrd@rti.org

Gall Loveland

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709

919-541-6330

gl@rti.org

Larry Preheim

Jet Propulsion Laboratory

CIT

4800 Oak Grove Dr.

Pasadena, CA 91109

818-306-6042

MS 525-3660

Ipreheim@jpllsi.jpl.nasa.gov

Robert Baker

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709

919-541-7401

rlb@rti.org

Dave McLin

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709

919-541-5828

dmm@rti.org

Ed Withers

Research Triangle Institute

P.O. Box 12194

Research Triangle Park, NC 27709

919-541-6311

bew@rti.org

p. 41

Appendix B: Viewgraphs Presented at Workshop

p. 42

Software Reuse
Tools Workshop

K.=_ $m_hI

Workshop Oblectives

Exchange Information on
• Software reuse tool development
• Software reuse tool needs, requirements

and effectiveness

Identify critical issues and needs in software reuse

Identify opportunities for cooperative and
collaborative research

Lmgaw W Caeaw/_t=mm_ _.J_m Bmr¢_

I I I II

Knmryn Sm/th !

P. 43

i
I I III • I

l

Software Reuse Issues

Defining software reuse

What are NASA's Requirements?

What will be the benefits?

What needs to be done?

Can we quantify our results?

RwuW.,h C4mtm"_ _

I II II J

Kathryn Smith I

" i "'
SOFTWARE REUSE PROBLEMS

What are the obstacles to software reuse?

People are resistant - why?

Tools and techniques to:

Develop reusable software

Identifying potentially reusable software

Storing and retreiving reusable software

' i.-,,-,_n_*-_ ,
R_roh Center/_y_lem= _ Br_¢_

T Ill

K.th_ Sm,hI
P. 44

HPCC Software Sharing -
Schedule

"Software,..Data.. _Open Architecture_Working_Group 1

& Bnblnographncs jr_ _1 ,_
Expenments _Prototype _

System
Operational

,c_mrtr_ System

Input for
Prototype

Svstem
1991 1992 1993 1994 1995 1996

HPCC Software Sharing

HPCC Software Sharing
Experiment- Logical Library

All HPCC. participating
organnzat=onsappear
as part of one large
"logical library".

HPCC Software Sharing

HPCC Logical Library

Sonwwe
BulletinBoard

Searcmng
Dec=Vnatt

Dat= BB_ograph_c
Searching Starching
Department Depwtment

Slacks Sugges_ons
Box

Main
Room

P. 45

HPCC Software Sharing
Experiment- Software Shelf

j " I

All Software Databases

are accessible either on

the shelf or via the

Catalogue of Software
Databases.

HPCC Software Sharing

Software Shelf

Netlib GAMS Cit,b Softlib

Cross-Index Cross-Index Repositow Repository

CUGDUS Cosmic NASlib MASPAR

Catalogue Repository Repository Reposito_

Supemet NTIS Catalogue of Software
Catalogue Catalogue Databases

i

HPCC Software Sharing Experiment-

Software Searching Department
I I1 I I

Software Searching Department

Software Searching
Department helps users
locate relevant software.

HPCC Software Sharing

Reference Request Forms R & D
Ubradans Databases Shelf

Softw_e Standan_ & Fadlltes &

Databases Sh_f Procedures Ot_lnizat;_
Dmbases Shelf Databases Shelf

Miscellaneous Sugguestions
Shelves Box

46

HPCC Software Sharing
Experiment- Software Databases

II I

All Logical Library
holdings may have

multiple user interfaces.

Netlib Cross-Index

Description V'rlO0 X-Windows

V'rlO0 X-Windows NeUib

Book Book Suggestions

Exit

HPCC Software Sharing

P. 4;

KAPTUR

Knowledge Acquisition for Preservation of Tradeoffs
and Underlying Rationales

A Tool for Preserving and Building on Engineering Legacy

Presented by:

Sidney C. Bailln

CTA Incorporated
6116 Executive Boulevard, Suite 800

Rockville, MD 20852

(301) 818 - 1200
sbailin @ cta.com

INCOaPOIt ATI[D

KAPTUR is • Sod designed le be purl er • reuse-M_l sottwsre developmem
el_irelmeml.

KA_I i _ ltf_ k Iw_ p_ _ p_aY_ll:

-- KAlVrIJll '89
-- KAPTUII '_1

E_rerls are underway to brim8 the teed i'rom • laberulery emvironmenl to software
developers.

-- KAPTUR I.l

P. 48

KAPTUR GOALS AND OBJECTIVES

INI'I)RIq)RATEI)

SUPPORT REUSE OF SOFTWARE ASSETS

• Capture engineering decleionl_rationalee that went into their development

PROVIDE AN EASY TO USE ENVIRONMENT FOR ACCESSING CAPTURED

APPLY THE ENVIRONMENT TO SUPPORT SOFTWARE REUSE IN SMEX MISSIONS

IN('I NIM)IIATF.D

RATIONALE / BENEFITS

COST SAVINGS THROUGH INCREASED SOFTWARE REUSE

RETENTION OF SOFTWARE ENGINEER KNOWLEDGE AND EXPERIENCE IN A

DATABASE ACCESSIBLE TO OTHERS

IMPROVEMENT OF DEVELOPMENT PROCESS BY BUILDING ON PAST

EXPERIENCE AND LESSONS LEARNED

P. 49

INCORIPOnATKD

KAPTUR handles more than code components.

-- requirements
-- design
-- lesl (planned)

KAP'rUR keeps a _iJ_I_,JUIU_ of components and _nwledie that would usisl
in determining which particular components to reuse.

Components themselves aren*t kept in KAPTUR.

KAPTUR provides inrornmlion on where Ihe components are kept (nol
implemented).

,¢"_l_,d_' WHAT FORM DO COMPONENT

(..,,__. REPRESENTATION AND KNOWLEDGE TAKE?

• _ Views • Decisions
• Tmdea(fs

• RmloNdcs

KAIvrUR ixll only _ore._ mpre_nlaliom of syslems, bu! also sl¢_reskey
tk'vclofmtenl decisions aluJthe feas(Nu bchiml IhCdecisions.

P. 50

/
/
J

Reusable Artifacts !

Similarities & Differences

Rationales

Underlying Issues

FDgUfO4-I: LJlyerll in KAPTUR'I Knowledgo

INOI)IIIN)aA'rltD

HOW IS THE REPRESENTATION AND
KNOWLEDGE CREATED AND USED?

I

D_III
il dtoapm_

md
mammmhl_

Drama

ladldlq m m

wmlm _ a t_mmp,mwu and ummu m mkcme
a_kmi c_mpm_axm #w _

The ctmi0nuou_ k.etJ_ck Im_p between the _uppiy
aoal thr tk.mand _itk" |,. the key i- rena_" P, ,51

.-- ''CNIIm qlllMn,Al"_" " ' '1

o

I

•.., ,i

!

KAPTUR t.O

• I .i i

2: The _ KAP1rUR Jk_riNm Pmvl##tl • I,Ilerwl_lc_l Mop
of AIh)ma_rN _ • St_t of _ Oewml_..f ntem

_ Re.sao:eArcn,tectur_l_l_m'_]

m I--
FU _

//',

m

_,llm

_h
T_ De_

GoDo_
aL_W_

l.m

Recoro or Mo(_r_ed
Domain r-looe I

_ of _ an_ PMosm_w W Tl_ Wf#m m _m o_an

P. 52

A

W

_oule Aeaulremontl I _ I

-I oo,.., t

-- _ _emallve

l
i

I"

Re_.se

$(.:cT.e_

Arcnl-

nmK_mu_ Omma JW m Ikm,,a,_fw _
unmmwm_ 0,d***_ me lle_t_ ,_ hem,

INL'ImFINtATED

KEY CONCEPTS IN KAPTUR

ASSET

• Any softwnm product that can be r,.o.d In future developments

• Includes systems, subsystems, objects, functions

&B_ILTEGZUBE

• A dmH:dplion of the structure of a software asset

• Um one or more 9rq)hical views

GENERIC ARCHITECTURE

• An architecture that can be Instontlated or tailored to meet varying requirements

DISTINCTIVE FEATURE

• Any significant way in which am archlteclure differs from its allmrnatim

• The way in which an asset manifests • significant enginsodng decision

P. 53

IN(.I |RIq)flATF.U

KEY CONCEPTS IN KAPTUR (continued)
• I I II • I IIIlII

ALTERNATIVES MAP

• A hierarchical doscrlpUon of alternative architectures for a giv_en type of asset

D._LALtLJL_.I.

• The legacy of knowledge about an application domain

• Packaged for easy access and muse

&U_EL_L_dnl

• The craztlorVmaintenance of the domain model

• Incorporation of new easels as they are developed, with features and rationales

• Access to the domain modal for the purpose of reusing the assets It contains

INI "l)llUPq)ltATPJ)

KAPTUR ENVIRONMENT DETAILS

• Approximately 45% of code 18 automatlcaJly generated

USES TAEt VERSION S

CURREHTLY RUNS ON A SUN SPARCSTATION

• Should run on any UNIX system supporting TAE

P. 54

SOFTWARE ENGINEERING

PLANNING and MANAGEMENT DEVELOPMENT

Softwlre Munegement Environment (SME) Knowledge-Based Software Engineering
Environment (KBSEE)

TheSoftware Engineering work addresses afull spectrum of activities needed to:

1. plan, manage, and monitor the development of, and

2. provide for the efficient and effective implementation of

complex operational systems.

Basic

Knowledge-Based Software Engineering Environment

(KBSEE)

• Incorporates the Evolutionary Domain Life-Cycle (EDLC) Model

P. 55

GOALS OF THE RESEARCH:

IN RESPONSE TO NASA SOFTWARE ENGINEERING INITIATIVE

Sustaining Engineering
- familyofsoftwaresystems
• evolution of domQIn models
. evolul|on of target syslems

Software Reuse
- reusable domain specification
• reusable domain architecture
- reusable code

Architectural Framework
for

Software Evolution
and Reuse

Enabling Technologies
- software process modeilnl;
• objectoriented methods & tools
• kn.wledge.based tOOlS
• object Ilh2Mllemen[

EVOLUTIONARY DOMAIN LII?E CYCLE

Apldlatkm D_lm Tupl $Tstcm
lurnlum Iiaplnlm+

l _ _ _trmlatl

No,tt_q

_ Tsrl_l T_t
s_ Sysms

O*mwQtLge

• Makes no distinction between development and maintenance

• System viewed as evolving through several iterations

• Life-cycle for family of systems

P. 56

PROOF-OF-CONCEPT EXPERIMENT

Apldl_

ln/ermell_

Domain Modclin;

I,.I

Uillllldll_ IIINIIl_mlml_ I1'1'o4"1, Adupilill_u

_omllA

Spl¢tll¢llton

- TarCet System Generation

_I; _ ;::_" ':,

;:i:_ ' t,_l,, I :, :::":
_i_l s,,,,. I _;::_::

T_
S_

EDLC PROOF-OF-CONCEPT EXPERIMENT (EPOC)
GOALS

Demonstrate viability of EvolutionaryDomain Ufe Cycle Approach

Crotto demonstration version of Knowledge Based Software Engineering Environment supporting
EDLC

Domain Modeling

Addros8 Domain Analysis and Specification

Target System Generation

AddressKnowledge Based Requirements Elicitation

P, 57

EDLC PROOF-OF-CONCEPT EXPERIMENT (EPOC)
FEATURES

Tool Support for Developing Domain Specification

Provide support for Domain Analysis and Specification Method

Create multiple view graphical representation

Store Domain Specification

Map multiple views to common underlying representation

Store in object repository

Multiple View Consistency Checking

Determine whether Domain Specification rules obeyed

Generate Target System Specification

Tailored version of Domain Specification

Knowledge Based Requirements Elicitation

EDLC PROOF-OF-CONCEPT EXPERIMENT (EPOC)
APPROACH

Off-the-shelf CASE tools where appropriate

Software Through Pictures (StP)

PrOvides graphical front end

Open systems architecture

Object Oriented Programming Language Support

Eiffel Language

Compiler and component library

Persistent object store

Investigate NASA developed tools where appropriate

TAE User Interface Management System

CUPS knowledge based system shell

P. 58

Multiple Yiewx ol l)oln:ml ._llCC

Obj¢_ CommunK=|km Diagraml

Aurq|tiom Hi4rrarchy

l)roor.ol'-(Joncelii EXl)Cl'inlc.iil

Domain Modeling:

Creation of Domain Specilication

Domain Spec
Picture

Extractor ,_"

Conlisteno'
Checker

Domain Spec
Picture

Relations

Nud¢!

Arel

Is I"

Domain Object

Repository ..,

Detailed Feature/Object
Object Specs Rules

,!

i_rool'.ol'-Concel)l l,:xliel'inicnl

Target System Generation:

Generation of Target System Specification

Multiple Views
or

Domain Spec

Target System
Picture

Generator

Mullilllt" Vlrw_ ,if
TIn'let Syliem _pcc

P. 59

r

..........................

Jol_m $_ Cm_w t
L_mmm $_mm D_cmmj

TecJImklrt Divm

presented at the

SOFTWARE REUSE TOOLS WORKSHOP

Research Tdangle Institute

May 5-6, 1992
t

J. W. GOLEJ ", D. M. DIKEL • ",

C. L PITMAN, and E. M. FRIDGE ill

NASA/Johnson Space Center/PT4

' The MITRE Corporation • • Applied Experllse, Inc.

CLPjwI -_/4,q'Z
. Software Technolosy Branch

_ Jdmm_Cmw
i_ I_mm:m0

I L Introduction

Presenters

- Support Contractors, not Civil Servants

• MITRE supports STB In Software Technology Infusion

• Applied Expertiso acts as HQ's liaison for Repository Based Software
Engir..mg (RSSE) System

- Representing JSC'e Software Technology Branch

• Its projects and activities

• Its viewpoints

Points-of-contact, NASA JSC/PT4 Houston, TX 77058

- Emie Fridge, (713) 483-8109

- Dr. Charles Pitman, (713) 483-2469

Intent is to provide 8 broad-brush overview of our reuse activities vs. detailing
the projects' technical or other merits to

- Stimulate dimcuseiona

- Foster Information exchange

Software Technology BrdaCh

Pe 6O

CLP)wll - _#2

, | ,

/S_i_ Omcm
i Tedwaor_Dvvmm

Agenda

• Themes

• Projects

• Observations, etc.

C,..P)w8 •
_are Technol_y Branch

iSm_

Themes

• As many different meanings for REUSE, as them are muse-related projects

. Them is no specific group dedicated solely to muse, but projects are
(e.g., RBSE)

- Each pro_ has specific goals

- Describing the projects will define how they support reuse

• There am economic and other benefits to muse

• Reuse is • goal. It will be worked on end Improved over time

• Reuse can be facilitated

• Transition from opportunistic to systematic reuse posture is underway

Cl.l'lwll. _/,,Ip)2

SoftwareTechnol_ Branch

P. 61

.... .__ ,_.

joh,_ sg,_ c,m. I
la4omau_ Sm Dmm_

m T_r.m_UU,vsm

P_-Enghwer_ _JcaUon (REAP)

w
JSCmT4

REAP
, ;hn m.,rce

ISD-Intemal
_urmE

Em madntenmm bu,rdenend provklo re-4nolne_og for JSC legacy systems

Huge _ In dlflloult-to-rna,."_tJn,yettunc_xmW respo_ve programs

Rodevelopm_ md InmdatJon, not _ Jewn_e or otherwtso pmctJcaJ

llmtu_Joo h_ JdaodcJ_ fooueN on mS

• _ovtde design mcovew and m-entraining cope_gtteefor m-i_ng legacysystemsintomm
m_nUdneb_ modem, md bo_r sysW_

• I_rovld4 Methods, Standards, Tools, _ DIte Integflltlon to facilitate the ro4flq_emontetion

• Focus on ira4 Iovofsgo off COTeJ_-aOTS toolL deviating only to WovJde othohviSO unavuilol_) ¢apebilitlw

• lm_ on exten_ble, open _rNom bamKl on 8tmdards m_d envlronmenls/Iranlowa_

,m,
. REAPvee_m 1.2--4ntegmee JSC._TBwxl C011;toolsundercommonprmmnUdJonconUolfor

_ and anon/is oeFORTRANto COklGEN-Standa_FORTRAH

. REAPvondon2.0|ufld_devok)pmmt}--fedmiUml.2wi_COTStoo_FORTRANandC. IncJudesdata
(Wn_4 Jn_onXJoo)IxNv_on oonvmadc_ toolsand _ repo_ory prototype

• 84hedu_

. oi_ m_,_wy _r FOm'RA_ d_enxl JAm)2; _r C _ _x0 _ CY_2

. _ mmd f.._.mrk _mm._ NOV_

- a_ ne._ _ jums

. _u-_--_--_--.-;for _ _me In/onnatkm_e_.-'e, ollw la_.___.,,_.__

¢'t P,w,, • 'UUr2
Software Technology Branch

Je_emoeSpeceCmm- 1
JJ_mu_msm fx_eamm

, l Tmue_ nm_m REAP
m mw

me. .1 r •

• Ouevsen_

• __,,,
• To4io lind To4t _

J Reuse Aspects

m
• Copl_ i oodomd N muchN potable o(oaw Ingonn_oo (eoflware,le cym W_) m

ekmnnlo ;ore In a mpm_ory

•um maly_ oq_btl,m wire hunm ea_e_ in mok_opeto _ract. group,and s_ture mo
Inmm_ to Mmln

m
• vm _ .meq, no_-mnd_ m d.e _oi_eUonn,W_ge and oUw env_or_

dmenmoee

• T_ dlflerwx:o8and thoIo_ ¢R8tandwddeflrdtkm8for andundo_mndk_ of

• Mu_vMua_nmnWm_mddeelgemoovmympl;w_mvali_now

• Rooovoq_lhlgl_lweldwlgekdonna_ontmmmdolsdUncultmd_on_ym

OonW_ _ omm no kmo_ravla_

AUaJna_nm_ _ ln_rmtl_ neNe _ bevad_ on _ uUu_/andROa_ _

• CuNonw_ ddwn tenor
P. 62

Software Technology Branch - _,

NASA
_mo

SmTool

Iml_mmmm$_ Dmnomm
Imhmmm_ TEJmmln_ Ommm SimTool

devgoo_ oOn_lClO¢

JSC/PT4 UnCom

Aid sbnulaUon cleeignm in the _ u_ and mointen_ of sinmlation al_lCaUoM, data, and
mo4ele from muul_e pens and domain wr.hitecturN

Provide • fulllty_ tron#mgonm• uar-oonMruoiN _ q3eclflc_Uon ogmmmlall_ into q_prolx_e
Aclar,ocle

• DellVmlmkm
. Fdrly_,n;aVv..m_ Unix-raNdprmoq_ withaUguncUo_,y, onechedule

. _mUon roomandN,m mS_qrOOmc.rm_ .,xW _
.

. phue i (p._o__.o_ cwnmu_ eurnnncu

. ph_o u (gevaopmw_ end_FNrm

CLPtw|• _s92

Software Technoiosy Branch

Jd,mm SantoCam,r
Im/mmWmS1numeDmmmm |

Im/almumTedmmlSyDWmm Sim Tool
_m

SdmTool Reuse Aspects

oflmlm

• 8oemmoomp_ents: esm_ter_nvmmodJs

• _p_U_ el_nmk.,
• Lmmwy

m • Tooomn_ e0m.Uk_ mw Imlm m _ _ W ukdng m _ uecuUve.
qqJlkxJcmInW_e, md nmihmodelshwmamonOme muenle N_mmm _m InUlonuy

• _ m 0dNmyaaqx.wm 0oboh_mN md m0aUo_ to_ oUw and_m._o_
• _ Nltawo oompoNn_omm_ them ofa _ eppu_mU_md coord_o_nsommUo.

• _plk:oUon 14Nmp4mn_ I_Oe mm modm_xl execuUve,md _ domeln_
J •

e

M SoenmmComponontomu_ooMonntoIntorl_ew_loonu_em.darde
- TO10We Imqratm

. To enooumoecmVcqxnemo_moddmtmUon,nmmm_, md oqem mUm_odn'ms

M Iloemm C_,mram_ I._.do atUtlmmW oemPOn_clmdfk:_U_ dm I_Wt_e (.nNs,
•*....._--_____ __,___ eto.Lmdcong_deoeedenckm .

CMmMIOMkm mhome m mrimer, hmdommlal dwek)Pnw_

. Coeqxmmom_
Fun_kxud

Doemln
_. 63

Software Technolosy Branch
I

CLP)wI_ - 5/4_

M S14um Dmaeme
tak:muum T_Jmok:r/U_vmou Mission

_qegt n4mo W m

U_ JSC/PT4 U_L

g_M

HQ/Code R

p.m_vgom

• Predicta_ aml reUoMyoompoM modoiso_mission_ saletycritical(MASC)al_iCalJons andsystems

• Tnmslorm mm_e into mai mmmlsystol_ _ tiw MASCI_OlXXlies

• Rqxemmt th0pflS04dlNLI_xluctS, andInto used toevolveand sustainthemo4eisas interrelated,
mmebie, aria _ wWacts eponnlngtM canqxm¢ andso--me en_neering "recycle

• Sup_rt bothprec_ encJtomul Jweisof modeUng_.:_dJne

m
• 0eUvorabJN

Ckw LaM L_ Cym Uod_ (CL-LCU)

. O_x_ _ Systm(0US) -

. Laxuy Ike_em_ SysW. (Lm)

• 8d_luie

a-Piwt - _2

Software Technology Branch

• j_ Isi_uaUm Slmml Dmmmm
Jvmm sw,: c,,uar

Vitamin T_mkq7 IXvVm

m . _ mj _bm ;m_mu,_mwu

• r,_qaaw andeonmm ;ms_umo_u
. _ md Nelm kUmtlmemwdve

Mission

I Reuse Aspects

• umm_ _ me_wm, UdudUoqx_omemm and_

Evolut_ u4NaJueysI_0Jn W UpCUt_ the modelendmen WooeedW ulx_ theoxisUng,wmm _
N R mnmun randUe_mvNwc_nUnuem nVno,V_ UASC p,opm_m W mm _go,ousmod_

mOnm_ey extendndmoneJ enmy4Untx_ _re_4_dVNm b_ ret_uont_ o__,mmUc moc_

Prov_ _nn_y ol m andd_._e W eyeing _nd m Ul_eb_ m _ m
modolo: olmn_ i4 m vlmol m NM, ewl_ hummdw of eul_nmme, andeUd_eWNIS

m

o._ •....

Software Technolo6y Branch
P. 64

Io

JoNem Spea Cmu,r]
IAk]mim Symma Du_mnl

• bdmlUSlm T_ Cqq,mm

WOI4_ ndlm0

Repository-Based Software Engineering (RBSE)

RBSE
m m _ _Lx¢,

JSC/PT4 UHCL, el al. HQ/Code C

PU'_'_m, Dilmti_m _ icrosul many Indulm'i_ and domiimL Oeiim and support robust product sot

i

Commit to _-ddwm quality. Cons_tently monitor and increase custom_ benefits

Serve hlgh-iev_ro_ Idgh-lml_'t dvmm nwtcots (Le., woe_ce, ecluc_Jon, md nVsskm, and slety
c_dtlcl) MfectJnO U.S. coml)MJUvenem imd Irom wh4(:htechnology sWmds qulcidy

Inilroduc_ _ Into customo_' _ soflwim) development prKflom so as to have them plmlllel
UtOoililrt_, ooneistency and predictablJIly ol OthM engineering dll_.Ipiin_s

mJsm tools, suets, imd pm:ti¢_ more NsiiylsconomicaUy _. Apply human focto_
englneedng, oxp_o,'oclas_flcaUon ocheme_ develop generllllzod We-cycle IXOCelmn_, and help lead
coo_ve .ffort_

• _ outclaU_ architecture limiting eyNom mspcnshmmm nnd c_iity with open-_/stems-bemd
lil_ miniglmml rl_lo_..,

- _ WoI,_A_

. I_¢_ _Ix¢_ m_,_¢, m1_._. ,ddU_iinca¢_i_l, ,_m_lln_ ,m d._._i_ _m,w. _

[Ad_OLrr H**p D,_: (8oo) 4oo-1,_e1

. 8,kr. h_jhor quomy p_kx:t, _o_HASA

• Iichemd.

pubUc<kxr._ oo_,w, mine Ubmy (Ado_q') *n opm,_km *_r.:* 1NO

En_ functlonailty/pil_ c_llty in SEP92 (Le., NASA FJe¢llronlc i il_rli_ System (NELS))

CLPjwt - 5.'4,'92

Software Technology Branch

Ji Sim_ Cauer]
ia/mnlm 5ymm Dmmnm
Uu_mm Taam_m _

-- 1n.po,amy.b,x0 Sommre Engim_ng (riB,.%')

m • emcu_ u_ cym imu,kx.

• _ m. _eOnlpommu
• _ _ i.¢nmu_ Inmmnology,u_is,w_

RBSE

Reuse Aspects

m • eXlma i ol mm.v .umu_ .rid _.um-_ Um_gh In_

• Sluwe advlu_ee of om,r r_orl,s

• m m u_ogy g_. mrooo_rmm_
• _ulx m eamgug eum,w requu_mx_W u_uq_,ngnm_r_ nmm md COT_GOTSprocU_s

Coopmion, ummUl

Bnmdth ol Iq&D wognm_ cmlcal wM* UchnoloW md pmctloe of mu_ nummm

To enoowap deveiopnu_ of modulmUaUo_ mml_mY, ma oUtect odenUdneu

• Ik_ltwe_pm:l_imlmi4entiaielmentscommontonmweengtmm'lngflelmL Effectlvem_
o_ oomm_ ,im, m Is n_im_ to q_Wo*ch *ffk:S*ncY and Pm_cti_ o_om_ d_Pu_

• NMIA _n m a mN_r cm_ti_k_ to I1_ _mluU(m--.4x_ _ a omame a_l I mmw

• T_erenmlmrrler_loreueo;_Pr_gnm_ai'_b'_/sPr_ (i...,cooperatlo_)

('l.l'lwll • 'V4J@2

Sohware Technology Branch

65

]
I_mwm,_ Slr_a*

PCS / ESL
Otetmham,

Parts Composition System / Engr. Script Language

_4x_wom

!tu_

w
JSCdPT4 Inference

NSTS

• H4_,_ soflwa_ wttl_rtdomains

• P_nVl • d_--_..Insp4dat_ (mroeNce enOtmmr)withminimumAriaexperienceto definecompleted
ap_kmtlons from retmal_ components

• Permitdomm specla_ to modifyendauto d_tven(architectures)

• Autonmtk_dlygec4nlteIdgh-levelcode from domaknspecialist'sgraphtcaJspedflcMJon

• Oecma_ lOng-termeomvamcosts

• P(:_j.--catadogsof _ of partsamdknowledgebaseto help link pantstogether

• ESL---ora_tcal Iogtoeditortot el)acing connectionof reusal_ components

Oeliverlds_

. Onschedule

. Woddngprolo4qfp44ol both PCSrandESL

Schedde

prototype deUvweclenclof FYtl

. p_oi.o_oon_M men0 of typ_l enomedng m:_aUons d,e end ot FY_

_ iMeeclon leeclt)ackIn Iryg3

CLPIwl - _,4,_Z

Software Technology Branch

hvronm_m Sywm Dmaommla_mJu_ T_mk_w D_mm PCS / ESL

_Compomltion System I Engr. Script Language I Reuse Aspects

i.m., . _.m_.,domm-eis._._w.p.m(p,V,VUwmod._.dm_O,q_)

• ¢amogs o_Iwm

• Llimmm

Developermrlevu 0ra_ tmm ix_. InvokesecSltm,md modmesOroPhWod,cing nN driverwlm
k ereldtoctummd_r m

Grmm van,_au_ w _,vv mOuaoe _,:h as Ada

tadm axxa oppucal andrequired input,pwNd toknowk._ _ to c_nOum IUI

_ m _ k_put_ oomp4u, comp_ d_a pocU_ _km mealyIm .xecut_

m

• Mod_ mu_ odmm to em',d.v_ to beknch_lodkt UlxwY

m • No_el moduleem mmalolew(moutadoPta_"

• mduiee ohouideontalnsumcl_ typeeof nWadm for Pemno md InCu¢_ mr° m* kn°v'_ _
t_ tim_m_uon m,vtk_

4 *1 I'lw_ _,I4P)?

m.

Software Technology Branch

66

SoftwareTechnolosyBranch
C1.PIw| • _L.q2 I_

_ Jdum Spea C,mer "1
ms,'--'_ /
""'-'"" AN INPUT DATA PACKAGE

SnUB
• STS32-flOHTE CNRLO NHRLYSIS/OFP2R CYCLE - -

ioolloo•ooonooloo•o•8oo•oolo••••OelllollO•

sYnIOL TAIL[nODS

$SV_DOL
oNOO,P
elOO, P

$DATA

SO.IVflDOL
OHSOTCLDEU.DHOIIHISYnOOL

oooloJoonooonolloooooooolnnoooJ•••olollooo

IEDIH CNSE AND PHASEDEFINITION
ooo•oooooo•oooooooonooooonnooooo•onnooooo•

$CgS[(O) /RENDEZUOUS PROFILE/
• •OO•O00•O80••OOOOlOOlOO•_OOl•OOOOO••0•OOO•

$PHRSE(IO) IXCI - EXECUTE ons-2/

sInULITIOH DEFINITIOn

$DRTR

oADO,P

OlCTOR - !
HOIDT - i
InnHUU - I
NU - 3 eTUO UEH, SIMULATED
KOYn - S mOABITAL sInULATIOH
IDATE = liD0,, 12 , 18, eLIFTOFF DATE
UECTIn - 23 , 54 , $2 140 oSTARTOF sin (nEeD)

liiiil_Ii_iIW_._I_Wi.i_Iiiii-iii--------

nOnTE CIILO iHITIILIZATiOH

flTCP • 2 STUD UEHICLE HONT[CARLO
HOISP . | |NAU OFF FOR REFERENCE

DnSOTCLDEU.nC-IHITIAL/STSS-O OIHIT COU - REF INTO ACT

Sol.are Technolosy Branch

[_. 67

_______ _,momJoMmmSpec_Comer 1
b/mma_ Sylam Omaome

I"ecaed_ D_vim INTUIT
i

INTelligem User Interface (IUI) Development Tool JSC/P'I"4

pumowoom

o0nlm¢l_
Inference, _ &

Barrios NSTS

• IqNo_ the r,ompm_ o_m mght admulotion mcl Its heavy input data ¢onstrucUon _ _t _

• Emptmm le on adding uat In c:ompmdng _ Input clam peckagee _rom •YOU•hie _ _ _m
ndnhual mocUflmllme

• Provl_ • ue_ trie_ly OmPtdCadInterlace thai _ts InfonneUon moo• effectively end •ekes interactions
¢IowW ancl mo_ oClIcWl

• 9utq_y •n InMdOgemau.datant (expert oysiem) m check uaw Inpm for conadmamcy_ a _ _ _ a
program execum conectJy on the flr_ run

• Suppty • _ _ system to ald In NarcNng for daUI sets

• Pmvtdo • 9enedo toot conflgurml_ to any qHJCa_

m

khedde

. P_4t-oe-oer_qN mc_muay demon_rmd h FYel

. _ ucmrrm m_om _ mem_ano mak:a0m _ncYos
• _ _ 0o,_._oum; _ _ _ cye2

_'q P.wv. _Jd_U?

Software Technoiosy Branch

b_rmam _ I_tmcl_

• _ T_l_), I_,aD

N4Telligent Ulet Intmlace (IUI) Development Tool

• q,,Jam,m

• UN¢ Immrlame

INTUIT

Reuse Aspects

m imtm' ot_l penn_ creekmn¢eew buadlngo_Us mci,the_o_, em_ent_ o_comP_
m_ Improvem_tsInmn_nmmmt.p c_ao-eo_0_r)
H,Nm,IW mmld_o_mm UN mM _ m randmare mntck._

Itedu_ cwnl_w I_Klranvnln0 _ mq-t_cl md mllow concentraUon on eng_"xin0 dorri_

neduc_ Umo mClUt_d got u.w tndning

Software Technology Branch
Po 68

('|.pI._ _I4/IP. _

___ j_,_,s_,.c-. I
In/ammmu Symmm DmCDI_

laUr_uamJ T_m_gy DWmol

Observations, etc,

• Barriers to muse, both real and procedurally ingrained, need to be
eliminated

- Standards

. Paradigms

- Culture

• Incentives need to be developed and put in place

- For reusing products developed elsewhere

- For developing reusable products

• Infrastructure must be developed, distributed, and made easily usable and
available to foster high levels of reuse of products of the software life cycle

. Software Engineering Environments

- Repositodes/Ubrarles--for uibility

• Reuse does not come free of charge, I.e., it costs to design and develop

. Reusable Items

. Methods to make reusable components available and, then, to find,
access, and utilize them

Software Technology Branch

b_mmmmIk.m_lI_mc_mm

Observations, etc. (Con'c.)

• How to design for reuse 18 not a given, but a developing concept

- OpUmum granularity of reuse and reusable components, if it exists

- Domain Independence or dependence, or both

• Probably the biggest paybeck lies with reuse at the process, design, and
model levels, i.e., levels more abstract than code

• Reuse is certainly not the proverbial silver bullet

Pe 69

Software Technology Branch 2o
CLPtwII. _t.W2

NASA _Hof,/.Bo_KI S4Rw,m Engineering Program

NASA'e Repository-Based Software. Engineering (RBSE) Program
and Collaborative Efforts

NASA Software Reuse Tools Workshop
May 4-5, 1992

Oave Otkel

Applied Expertise, Inc.
1925 Noah Lynn Streel, Suite

Arlington, VA 22209
S16.-0911

FAX: 516.0918

dd|kel_po.eei.cmu.edu
NASAMAIL: DO_KEL

NAIA C_A_ve _tF_ _ t-:l _JIb_cmtfa=tN_.tot Pqte 1

NASA Repoeltory-BaNd S4flwlm Engln_rlng Progr*m

Background - Management Structure

Level I

Level 2

Level 3

NASAHQ _ cah,_ J
Office at Commonciat Ptogrlma

Technology Trsneler O_mlon

-- ito. jtnformMkm 8y_lenm Sclentllt
Olrtctorlll

i

i _ tl L,_._iDevelopment Optmtlone

HAtlAC_lwdlv* Aif_Jv NCC.I. M ILdlx_m=tNo. t01 PallP_1

P. 70

NASA RepoeHory-keed $oh_,_m Engineering Prqmm

Background - History

• RBSE has operated • prototype public-domain software
reuse library (AdaNET) slnca 1989

• Outdated architecture limits system responsiveness and
capability

• However, AdaNET Is now • highly capable service
organization, skilled In cataloging, managing and delivering
software assets

.. Call the AdaNET help desk -800 444-1458

for more Information

NASA C_l_Jike Af_l,I k_C II 16 Sutx:_t_ No 10t Pqe 3

---- NASA Rep_itery.BMed Software Engineering Prngmm

Concept in Brief

• Software practice lacks essential elements common to
mature englnserlng fields

• No one program can solve this problem - Cooperation is
essential

• NASA can make a major contribution to the solution - both
as source and reuser

• RBSE Iscomm|tted to Customer-driven quality

• RBSE will serve high-leverage, niche markets

• Research will make reuse more accessible

NMM Ceolmalke Af mmm NCC tl t4 II_mMIrml No. 101 Pqe4

P. 71

!

NASA ;"lepo4Rory.Sa4ed hftwlm Engineering Pr_lmm

Software practice lacks essential elements...

... common to mature engineering fields, for example:

Standard practices

"Rarely would • builder think about adding a new Jub.basement to an
#xlotlng 100 Mory building; to do so wo_d be very costly rand would
undoubtedly invite bllure Amazingly, users of loll'wire •yet•me rarely think

twice about asking for equivalent change_ aeslde_ they arguB, If is only •
simple •after of programming." [G. Boock Object Oriented Design]

"... •hipping the product •nd getfing the details right Mter." [g,_lnes• Week]

Standard components

"... It I• highly unus_l for • construction fltnT to build an on.site steel mill to

% ¢uetom girders for • new b,llding..." [G. Booct Oblect O_ted
nI

This is a _ problem

NNk4C_F_a_v,A(FeerrLwNCC I _4&d_o_r'vP, b 101 paees

NASA Repoeltory-hNNKI 8oflwlzre Engineering Program

Cooperation is Essential

Without effective reuse of common elements, software
engineering cannot approach the efficiency and
predictability of other engineering disciplines

• There ere many barriers to reuse; no one program can
solve this problem

• Breadth of R&D proQrams, balanced with cooperatior_, Is
crlUCal while the tecnnology and practice of reuse matures

• Technology must get Into the hands of u_lrl aQose many
Industries end domains - Reuse libraries customize
technology and lervlces to needs of their customers

- Share advances of other repositories

- Expand base of library suppliers and customers
through Intaroperabllity

ceoess_e _ eq,,_v N¢¢ t 14_,ad ill I_1

P. 72

NASA FII_oOOItory-BMaKI _um F.nlli_rlng Program

NASA can make a major contribution...

Through RBSE, NASA Is working to Impact mainstream
adoption of reuse, both as source and reuser of
high-quality software assets

• Replace outdated architecture with high-performance
hardware and open-ayateml-based library
management system

• Deliver and support robust Nt of products

• Flllcritlcel technology gaps through research

• Adapt to changing customer requirements by
Integrating research results andoff-the-ehelf products

• Broaden customer and supplier base by supporting
Interoperability

ILIIA C_Faitve AIFIImI_ NCC I-lilu_r_ No tO1 Pigs I

NAIA R_oqxttc1-1kuxl Iioflwem Engineering Program

NASA can make e malor contribution...

Objectives

• Build loyal customer base among high-Impact niche markets
- customers whose succeu effects U.S. competitiveness
and from whom technology success spreads quickly

• Introduce reuse Into customers' mainstream software
development practices IN) that their software englnserlng
efforts parallel the clarity, consistency and predictability of
other engineering disciplines

• Make reuse tools, assets and practices easily and
economically accessible to unlverahlei

• Consistently monitor and Increase customer benefits

k4&4 Gm_.all,, Af*mml _ I te Ikdcc_rKmNO.101 Pq* |

P. 73

HASA Iqm_oeRory-Baeecl S_twere Engineering Program

NASA can make • ms}or contribution...

Benefits

• Increased customer competitiveness

• Widespread dissemination of NASA-developed software
assets and technology

• Graduates who are better able to engineer largo, complex
software systems

• Safer, higher quality products for NASA

4SAC*A_ NC¢: O 14SLd_onl_m k_ tO1 Palp e

_tASA Rsgoekory.Beeed SOftWAre Engineering Program

Commitment to Customer-Driven Quality

Ensures that RBSE --

• Provides customers with what they expect and need

• Focuses on efficiency0 I.e., providing products and
services at a minimum cost while ever more effectively
Increasing bottom-line benefits Is target customers

• Measures its Impact using well-defined criteria

_ Caqwd_, AlM_,erd NC¢ t)-10 l_lmnlfod No, Ioi Page _0

P, 74

NASA I_xtiqory.Baeed 8oftwam En01nwring Progrsm

RBSE will serve high-leverage, niche markets

• NASAJclvlllan aerospace application domains

• Civilian mlMIon- and software-Intensive, Mfety-crltlcal
systems

• Educational institutions interested In reuse

Pql111

NASA Rspoellory Ilaeed Softwmm Englneerin 9 Program

Research will make reuse more accessible by...

• Applying human-factors engineering

• Exploring new classification schemes

• Developing • generalized life.cyclo process model

• Helping to lead key cooperative reuse efforts

NASA ¢ooiIdb e A4F e_,_4 H¢¢ I)114 IMIml* mi 14_ 14)1 p_ 12

1) . 75

Reuse

Software Reuse in

Systems Architecture Branch
Information Systems Division

NASA Langley

NASAI-=,,-=.-., ==,===
Langley Res_r_ Center/Sy_m Ar_rtm 8nm_

J
Kamrjm Sm_

If]1 I I

I1|

Io_u_EI

• Background

• Eii/InQuisiX overview

• Plans

I.=_lley Re_em_ CeeW _ _ 8meea

J
KA_hryn Sm/th

P. 76

I Eli/InQuisiXBackground[

Eli (now inQuisiX) Software Synthesis System - SBIR
Software Productivity Solutions, Inc., Melbourne, FL

Phase I SBIR (Completed Sept 1987)
• Defined reusable software synthesis methodology
• NASA CR 178398 Knowledge-Based Reusable Software

Synthesis System

Phase II SBIR (July 1988- Sept 1991)
Objectives:

• Integrate advanced technologies to automate the
development and use of reusable components

• Make software reuse easy to perform
Build 1, Prototype library system [Automated Reusable

Components System (ARCS) - US Army CECOM], Jan 1989
Build 1.5, Initial Eli library system, March 1989

Length/Ro_rch Center/b"ystemm ArcNtK/Ure Bnm©h

J
Kathryn Smith

Eli/InQuisiXBackground 2]

Eli (Build 3) April 1991

Automated set of cooperating reuse tools
window and menu based user Interface
runs under Xll on a Sun 4

_.,, • r "," _p., ,,..4t L

Library facilities to support classifying, storing and
retrieving reusable components

Design Synthesis Tool - Software Through Pictures

Component Checkout Tool

File Checkout Tool

Ada Component Metrics Tool

Phase III (commercialization) Winter 1992
Possible candidate for STARS
Support from SAIC

Lm_g_W Cen_r _"ymW,,J_ Sr_ /_thryn Srr_h
P. 77

Top-Level Eli Architecture

W

J
m

' I InQuisLrSoftware Synthesis System[

Eli/InQuisiX I '
Software Synthesis SystemJ

Flexible:

• User defined component classes and classifications

• User tailorable and user extensible

Supports many types of attributes

• Faceted classifications

• Text

•File

•Keywords

Lmgk_ R_mrch C_ter/b"yetm_ .4_m/t_-tumBnm¢_

J
Kathn/n ,_nlth

InQuisiXLibrary Classes["_

Nlnte
AuthOr
Dote lul)m Itted

J===== I _ I =====

L_ [Tyge l Tyler
Function l R,,=t==s.,w I st_=,-e
AHtrlgt I [Relllted S/W
xeywore= I I
Oev. compiler I I

,._.t.= _¢. I I

I _,,_,Iv I I _,_t,=,,, I I t,,t..=,,,t, I
I °"'_'-''°' I I I I "'"'=' I

J
Kathtyn Smith

P. 79

Eli/InQuisiX

Plans

I I

Serve as a beta test site for Eli/InquisiX

Technology Transfer

Develop interaction between InQuisiX and CSDL CASE

__I "_'-_'-__,"*="_,,
Langley FleeNrch Center /b_tenta Amlll#ecfure 8mn¢11

/
KMhryn Smith

EU_:SDLC.AS_
' l_ Interaction |

_SoftwareDeveloper I

S Sf _%%

S S %

,:l- ',,, ICASEi-_ _,, System = I.aRC
Flight
code

ii

I.mgt.yFIN_r_ ¢4,nw/Symm= Am/_,c_ 8mn_
K_ryn

P. 80

JPL

Hypermedia Library Technology
(HyLite)

Presentation to

NASA Software Reuse Workshop
May 5-6, 1992

Joseph H. Jupin
Edward W. Ng

Jet Propulsion Laboratory
Pasadena, California

HyLite

Agenda

• Introduction

• NASA's Need for Hylite

• Accomplishments

• ESC

• Summary

E. Ng

E. Ng

E. Ng

J. Jupin

J. Jupin

t

JPL

IPb1_lll M

l

P, 81

!It I .

Introduction

JPI..

• HyLite is a research & development activity to produce
a versatile system as part of NASA technology thrusts in
automation, information sciences & communications.

• Useful as a versatile system or tool to facilitate the
construction of electronic libraries for:

- software components
- hardware parts or design diagrams
- scientific or engineering datasets or databases
- bibliography organized by special taxonomy
- configuration management information
- etc...

mu M

APPLICATIONS AND SPIN-OFFS (5 YEAR HORIZON3

P. 82

JPU

s HyLite provides the potential to address a b_ad range of
NASA problems in the 1990's, such as,

- scientific data deluge
- rapidly increasing complexity in software development
- ever growing volumes and variety of documentation

• HyLite evolved from a task formerly entitled the
Encyiopedia of Software Components (ESC)

ESC was motivated primarily by the need for software reuse

• It was designed in anticipation of the "K by N by L" problem,
that is, K kinds of computers, N applications, & L languages

• This presentation will focus on the software/reuse relevance
of HyLite _M

Hylite Accomplishments
(FY92 and Projected for FY93)

JPt.

Prototype for beta testing on color Macintoshs

Graphical user Interface (GUT) developed for inserting new components
and property knowledge, for browsing and searching databases, and for
retrieving software from selected networks

• Contain Ubrary of math software and library of data structures and algorithms

• Presently being adapted as a graphical front-end for national software
exchange experiment

• To be adapted as an Intelligent front-end to NAIF, a library of software
tools and datasets for space flight navigation system

• Investigate collaborative arrangements with Ames and Langley on
applications in aeronautics, materials, and structures areas

I

Connect to Netllb, a very popular enline software library

Initiate SBIR contract for commercial spin-off

] I

mM
w

ej 83

ii inl rl I I I

Encyclopedia of Software Components (ESC)

Overview

- Pertinence to Software Reuse
- ESC Proof of Concept
- ESC Prototype
- Current Developoment Effort
- Future Enhancements

- System Waikthrough
- Technology Components
- Summary

Ill II

in,role s/ms

Pertinence to Software Reuse

• Facilitate Electronic Search for Software

• Transparently Link Software Repositories

• Organize Software into Logical Units

I T I I I I III 1 II

IlWltllll M
Pe 84

m|

ESC Proof of Concept

• Development Environment
. SuperCard on Macintosh
. Think C

• Features
. Browser
- Publisher
- History List

Lessons Learned
- Stronger programming language needed
- Better representation for software classification
- Software classification needed
- Automatic GUI generation needed

mv _IM

ESC Prototype

• Development Environment
- Macintosh Allegro Common Lisp
- Think C
- PixelPaint Professional
- Canvas 2.0

Features
. Browser
- Searcher
- Publisher
- Retrieval Mechanism
. Classification Mechanism

-- Linnaeus
-- Semantic Networks

mu

P. 85

lJ

Current ESC Development Effort

• Port to Unix workstations running under the
X window system

• Inclusion of AI technologies
- Intelligent retrieval
- Learning from experience
- User modeling
- Incomplete retrieval statements
- Spelling and grammar correction
- Automatic suggestion of alternative retrieval

requests when a trieval fails

• Updating the Prototype to include other capabilities
- History List
- Hypertext

m_
, , J

I I II I I II I _ III

JPL
llml I •

ESC System Waikthrough

II I I

mS/tAll

P. 86

Technology Components

• ObjectOriented Databases

• Classification Scheme based on Semantic Networks

• Automatic GUI generation

mM
.J

JPL

Summary

• HyLite represents an important area of NASA's computer
science base research and development

• It is promising in significant potential pay-offs to a broad
range of NASA problems

• Software resue is one important application

• With mutual leveraging among NASA Centers to industry
and universities, we can make significant progress in the
next 3-5 years

• JPL is strongly motivated to cooperate with other NASA
Centers

P. 87

COSMIC:
I

Still Changing After All These Years

L. Scott Clark
Assistant Director

COSMIC
The University of Georgia

382 East Broad Street
Athens, GA 30602-4272

scott@cosmicl.cosmic.uga.edu
Voice: (706) 542-3265

Fax: (706) 542-4807

,- - ill

Softwlme ReuseTools Workshop (5192)
, |

PACE

COSMIC: Still Changing After All These Years
II I III II

COSMIC OVERVIEW

Historical Background

• 1958 Space Act

• COSMIC Founded in 1966

• Contracted out of Code CU at Headquarters

• NMI 2210

i"l] i

Software Rowe T0ols Worlmhop (5/92)
P. 88

COSMIC: Still Changing After All These Years
I I I il r iI I

COSMIC OVERVIEW

COSMIC Now

• Functional Divisions

• Available Computing Resources

• Inventory Composition

• Characterization of Customers

• Promotional Efforts

SoEtware]Reme Toob Workshop (5/92) PAGE 3

COSMIC: Still Changing After All These Years
• I I I

COSMIC OVERVIEW

COSMIC
And The Software Innovator

• Technology Utilization Offices

• Software Submittal

• Program Checkout And Evaluation

• Tech Brief Awards

Software ReuneToo_ Worknhop (5/92) PAG'B 4
PI 89

COSMIC:
I i

Still Changing After All These Years
I

SUBMITTAL/DISTRIBUTION ISSUES

Connectivity

Software Submittals

• Coordination Of Submittal With TUO
Transmittal Documents

• Documentation

• Authorization/Security

• COSMIC *-*Author Communication

• Research or Pilot Codes

]_m T nmnn

Software Reuse Tool. Workshop (5192) PAGE 5

COSMIC: Still Changing After All These Years
I II III

SUBMITTAL/DISTRIBUTION ISSUES

Software Distribution

• NASA vs Outside Customers

• Documentation

• Ordering

• Authorization/Security

• Intellectual Property Rights

" . . ;,'," 'i h

kabvareReme Toob Wotbt_ (5/92) PACE 6
90

CERTIFICATION OF REUSABLE SOFTWARE
COMPONENTS

Presentation to:

NASA Software Reuse Tools Workshop

5-6 May 92

Rome Laboratory
Gdffiss AFB NY 13441

Deborah Cedno/C3CB/DSN 587-2054

Overview

• What is Certification?

• Certification Considerations

Test TechniquesFormal Verification
• Quality Analyses

• Research Areas

• Rome Laboratory Program Plan

P. 91

Considerations For Certification Of Reusable Components

0

cmmm¢lmblllin

Certification Methodology for Reu_ble Software Comnonents

d TedmlqeWTee_lAW
DomainSpecificReu_ta3nry

Why Certify Components?

• insure high quality

• provide degrees of confidence
• aid in reuse decisions vs

development from scratch

• alleviate legal iNues

• promote reuse; significant cost

savings (over 50%)

What will this Prognun provide?

• c(_lif'i_tl/_n _mulfi-leveJ

• ulvanced _chniqueaRools for component

analyses (softwm test & verification,

software quality assessment)

• another dimension for choosing reusable

components (e.g., choose a highly

tested over a poody tested componenO
P* 92

STRAWMAN CERTIFICATION STRATEGY

lEVEL 5

LEVEL 4

LEVEl. 3

LEVEL 2

i.BV_ !

__pERI_EMANVERI_CAT]°N _]

(_ EVAIJJATION L

l MUTATION _O

S QUALITY _ RATINGS

I BRANO! TESTING (Whm B_)

$ - COST TO PRODUCE & CEXTWY

$ -COST OF PURCI IASING COMPONENT

CORRELATION BETWEEN BRANCH TESTING AND ERRORS FOUND

NO OF CHECK 50URCE: 1987 STU0¥ FROM JAPAN
CONDITIONS Retfer Consultants , InC.230

L

200 _ 01'uncheckled conditions (Ix'inches)

4 5O

TIME

12130 115 II 15 21 2_ 31 214 I0 14 20 26

t
P. 93

ILII L

LIFE CYCLE COST BENEFITS

USlNa AN AUTOtIATED TEST

TOOl.
I I II

C0flSt/IJCt IhteQfltlon Operltlon I

I wI,IEN[RRO_S

DETECTEDE_Y,

COST:
400 error1 x 2 J_)l_ll. v$

EN F.Rg0 _JE J

COST:

200 er_)rl 200 en'_"l

x 20d (4) • x 2P4 (9)

error S2OQ04

FORTRAN- lg7g

JOVIALJ73. 1983

COBOL- 1983

P. 94

Ada Test & Verification System (ATVS)
Analyses Capabilities

 JJ .m=zi

Inputs

muc'l_du

C'O_IIIAGll

=- 1
TAJRCI_G

MIClNUC
hATA

-- ETC.

Outputs

i
i

STATIC ANALYSES

LOOK AT CODE STRUCTURE

WI_d ored thevadaldo,paramotms,me. namo_?

Whoreare U_/Ioca_ inIM codo?

Whlchur_ Ca!/amcaloclbyo_r units?

Whatcloll I_ uNtnedng IoclkIIw?

_ _?

P.

STATIC ANALYSES

BENEFIT: Identify a Potential Problem

• SET/USE REPORT

• SOURCECOOEREPORT •

• _ STANDARDSREPORT

• CAR:BOOY 05..,.REP-tgN11:30:21"

AOO_OAR_TO_LI_ PAOC_BOOY

CAR_INFORMATION IN_PARM CREATE_CAR UST:BOOY
............. SET/USE ANOMALY: Object is never used. ".........

6O0

Pw 96

Structure Units Declared

- Packaqe - 1
- - Bodies

- Procedure 3
- - Bodies

4
- Generic Instantiations

- Haximum Program Unit Nestinq Depth 1

With Context Clause

Use Context Clause _ 95

Source Lines _ _ 20

- Blank _ 70

- Code Only 4
- Comment Only

i
- Code Followed Comments

..... _ - - ?l

Line_ of Code 36
- 0 Semicolons
- t SemLcolon 59

17OCT 190014:18 ATVSPR_ STANDARDSREPORT
ProgramLibnW:SIMULATOR,WORK
CompilatlonUnl_CAR:BOOY
StandwdsVendon:2_SEP-1909 07:48:48

PAGEI

1 wNhTEXT g), CREATE CAR_UST;m TEXT-_, CREATE-C,R_UST;
(Sld F16_o_: USEdame - fod_dden¢on_n_ preunL)
3 p._xw CaR_

(4SWC01vk_aUK_pe__xmcelmmw_h commems-nWenumo_60n_ach_ved. P_cenmoe= 0)CARD_TA:CAR__NENTORY_WPE;

7

: PUT? _ m_n_xyexwq_e_;NEW LIE;
10 Putt(" EnNrl_om_lon Io_4 cam_;
11 NEW_UNE;
12 lot I _11.AIo_

(S_I F07vk_od: I._v_med Loop-k_dden consUudIXm_)
13 NEW_UNE;

P, 97

STATIC ANALYSES

BENEFIT: Aid Maintenance of Software

• Bcrlw _ REFERENCEREPORT

• UNITS_ REPORT

BCnW CRO6S RB=ERENCE REPORT

Bl1111_I O01ImI.AI I

¢=mL_.cB_n.zm'

I ¢JB IFO Lilt'

¢u_..=_To -
I
I
PlklCl _ lO
m_TLTmT -
='ndraI"=__=o
_iMII,

IPImaBal I I'l¢_

I
II¢ =llnllmRCl_laml
_=_mm

__mTmm_A_m

jm_m__m

¢=Rmm-cl'_tm_sInmT _ as

8110Dt' 170

mm_'m_-_,mv 1_ Is

,,. ,,
_=I I SS 54 S?

SI U

P. 98

17 OCT 1989 14:59 ATVS UNIT STRUCTURE REPORT PAGE 1

Program Library: SIMULATOR;WORK

Structure Unit Unit Kind Starting Source Line

...................................... -,---,--,,--,-----,--.-,-,--.-.

tQeeo_*Qeee_tite_IQe_ee_*ottttt_#ee_e_eQ_t_mo_tQ_e_o_Qi_eo_Qe_eet_QmItI

CREATE_CAR_LIST

.CAR TYPE I0

.CAR:COLOR_TYPZIO

.szY_=TYPZjO

.PRICE TYPE_IO

.GET

.ADD CAR_TO_LIST

.PUT_LIST

Packaqe Body 3

Generic Instantiatlon 8

Generic Instantiation 9

Generic Instantiation I0

Generic Instantiation ii

Procedure Body 17

Procedure Body 50

Procedure Body 64

DYNAMICANALYSES

ATVS

t
ATVS
I_ BxW

Pe 99

DYNAMIC ANALYSES

BENEFIT: Provide Test Coverage

• EXECU/IO_COVER/U3E
•uNn" COVERAGE REPORT
.ER/UNCHCOVER/U_ REPORT

• WREPORT

• TAgOI_ REPORT

UNIT COVERAGE REPOflT

Comp. UnIL Line
Structure Unit ! Kind

I NUHBER
I
I Count

NOD FUNCTIONS:IK_OY
14OD FUNCTIONS 2 PKG BDY 0

CAL_.AF_¥EAR 4 FONC BD¥ 3
GET DATE 16 FUHC BDY 2

DATE H_i IP : BODY

D_E _U_Ze 6 elCG BDY 0
NEXT ..D&TE 8 _ BDY 3

D&TE_I.AB:BODY
D&TE_LNB _ 4 PROC BDY 1
block 24 24 BLK STNT 3
block 43 43 BLK STHT 3

OT EXECUTIONS
(Normalized Lu 14dxlmum)

20 40 60 80 100
.p

Qtt_t_Qt_Qt,_Q_tQQQt

QIQtQ_QQ_QQ_tttOQQOtttRQtQQR

&QeOQ6_Itt

640Qe_O66Q66Q6J1666066J_O_6666

P. I00

BRANCH COVERAGE REPORT

Structure I Znvo- Total Branches Percent I Branches
Unit/ IcatLona Branches Executed Branches j Not
LLne I Extcuted t Executed

i_mm mmmm_lm m m m_lmmmmmmmmmmlmmmmmmmm4m mmmmmuum mum u_mmmmmmmom_mmmmm mmmm omml mma u mmmlmul

COe_ILATION _lZ?: 14OOF_N_TIOtlS:BOOY

HOD FUNCTIONS / 2 0 O 0 0 t I

CAL_Lr, AP_YF_q / 4 $ 4 2 50 t | 2 3
G&"r_D&Y! / IE 2 1 1 100t I

COtabILATION UNIT: DAI'INANIP:BOOY

D&TE HANIP / 6 0 0 0 0 _. I
__O&q_ / 8 3 18 5 28 k I S 6 7 8 9 10

11 12 13 14 15 1(

8RN COVERAGEREPORT

P* lOl

ATVS STATUS

• Government Version Completed (Sep 89)

• Commercial Version Currently Available - AdaQuest

- Fully supported

- Robust

- POSIX/Motif Compatibility - Jul 92

- Additional standards from
Ada Quality_& Style Guide_- Jul 92

MUTATION TESTING

BB31N
READ K
IFKclO
THEN
J:,,K+5
B.BE
J:-K+10
ENOIF
wRrrE J

OIIlI_NALPltO_C4B

P_ua

BEGIN
READK
IFKalO
THEN
J:-.K+5
ElSE
J:,,K+10
ENDIF
wRn'E J
END

HurrM41'PROGRAB

MUTANT:A VARIATIONOF THE ORIGINALPROGRAM
THATCONTAINSA SINGLE INSERTIONOR DEVIATION

P. 102

L MUTATION TESTING /
EXISTING MUTATION TESTING SYSTEM CAPABILITIES

• ANALYZES FORTRAN CODE
- AUTOMATES MUTATION TESTING PROCESS

(GENERATES AND EXECUTES MUTANTS)
- MAINTAINS DATABASE OF TESTING STATUS
- LOCALIZES PROGRAM ERRORS

USER RESPONSIBILITIES

- GENERATE TEST CASES
- VERIFY TESTCASE RESULTS
. ESTABLISH TEST COMPLETION CRITERIA
- IDENTIFY PROGRAM ERRORS

MUTATION TESTING

MUTANT OPERATORS - A SIMPLE TRANSFORMATION

• STATEMENT ANALYSIS

. RER.ACEEACHSTATEMENTBY"CONTNE"
• REPLACEEACHSTATEMENTBY
. FER.ACE THET_ LAIEL INEAOI 'OO"STATF.IIENT

• pfIEDICATE AND DQMAIN ANALYSIS

- TAKETHEABSOLUTEVALUEOF ANEXPRESSION
- REPUV_ ONE AIMll.D4ETICOPERATORBYANOTHER
• FIEPLACEONERIBLATIONALOI_RATOFI BYANOTHER
. FIEPLACEONELOGICALOPEFIATORBYANOTHER

• COINCIDENTAL CORRECTNESS

. REPt,ACEA SCALARVARIABLE
- REPLACEAN ARRAYREFERF.NCE
.REPLACE A CON_ANT

P. !03

MUTATION TESTING /
MUTANT STATUS

NUMBER OF MUTANTS GENERATED: 307

PERCENT EXECUTED: 100%
PERCENT KILLED

N.L IdUTANTS

SAL STM

DMN

POA I PRD

ARY

CON

CCA OPM

SCL

] 99.02%

100.00%

100.00%

] 98.90%

9524%

10o.o0%

100.00%

100.00%

99.00%

RL SOFTWARE QUALITY
FRAMEWORK APPLICATION

I II I" I I II lli

CHECK
P. 104

..... ,n,

QUALITY REPRESENTATION

ACQUISITION
CONCERNS

USERORIENTEDVIEWOF PROOUcr QUALITY

SOFTWAREORIENTED
ATTRIBUTESPflOVlOE

TIVENESS

FUNC110N
C0WW.N_ QUAI_TrATIVE MEASURES

AND MEASURESOF
AI"II_BUTES

Ref: Specllk'utim_Of Software (_dity AIIributes (RAl)C.TR-ILq-37) Vob I-Ill

QUality Evaluation System (QUES)

Aria PDL
Ada/FOItTit_ Seuree Cede
Dais ColI_'U_ hnm

SLCSEi)mbm _

v

VktlllatkW
IUN_

eGNb
• Achlevemmls
• Qua_y Gromh

• S/W Quality Indicators
(AnCIP 80e-14)

• S/W MuuqpmmN indiculorm
(/_3C1' lee.4.1)

o Autonmles The R,hJ)C S/W Quality Framework Evaluation Guidebook
(_.TR-SS-37, Volume I_

o Supports Acquisition Managers, Project Managers, & Enrlneers
o Allows Quality Goals To Be Specified
o AssessesSoftware Product Quality

P. lo5
ql_dlly 4411qq

SOFTWARE QUAUTY GOAL REPORT

PROJECT:
PHASE: REQUIREMENT8
LEVEL: CS¢1
ENTITY NAtU[: AlilJ

CALOUtATION DATE: tm I),411[: lm

1.00

"JB

g =
• .IJ

oIID

N

CORRI[CTNF.N I_JAINLJTY I_WIYAIIILrI'Y VERIFIABIIJ_ EXPANOAINUI_

_._u. _-'_-,_ • ACTUAL

FRAMEWORK EXPERIENCE AND
RESULTS (JAPAN)

AVERAGE 3% OF DEVELOPMENT COST PER FACTOR

25% SAVINGS THRU FULL-SCALE DEVELOPMENT

51% SAVINGS AFTER 1 YEAR MAINTENANCE

P* i06

FORMAL VERIFICATION

Program

DEFINITION: Collection of techniques that apply the form .ality,
and rigor of .mathematics to the..._ of IXpV.mg _.e
consistency between an _=gomnmoc sol,on, ana a
rigorous, complete specification of the imem
(Ixtttavior) of the solution

Develop new techniques for Insertion into Certification Methodology

• Soltvmm FaultTok_nco

• Pedomw_ mmmm _' _ _

P. 107

PROGRAM PLAN

Develop Initial Certification Framework
• Funded by CIM central funds
• Contractor - RTI

: Schedule: May 92 - Dec 92
Deliverables - Technical Report

- available tools/techniques
approaches for information storage
certification framework

- plan for application of the certification process
plan for cost/benefit analysis

- plan for incentives

• Apply and Validate Certification Framework
;-Funded by RL 6.2 funds
• Schedule Jul 93 - Ju196
• Deliverables-Technical Reports

- Revised Certification Framework
- Results of application of certification process
- Results of cost/benefit analysis

SUMMARY

CERTIFICATION PROCESS & TOOLS

- PROVIDES MEASURE OF CONFIDENCE IN REUSABLE COMPONENT

- PROVIDES SCALE & PERFORMANCE DATA IF REQUIRED

- SOUND BASIS FOR BUILD/BUY DECISIONS

P. 108

Asset Source for Software

Engineering Technology
(ASSET)

('Sarics W. i,illit. Phi')
SAIC
70}-749-11732

lilliec_mcl.Zl_in@lds.sdJc .edu

GOALS

•ESTABLISH A DISTRIBUTED SUPPORT SYSTEM FOR SOFTWARE
REUSE

SHORT TERM

• IMPLEMENT A SOFTWARE REUSE LIBRARY

• BECOME FOCAL POINT FOR SOFTWARE REUSE WITHIN THE DEFENSE

INDUSTRY

LONG TERM

• HELP STIMULATE A US SOFTWARE REUSE INDUSTRY

P. 109

ACTIVITIES

• ASSET ACQUISITION, CATEGORIZATION, AND DISTRIBUTION

• ASSET CONFIGURATION MANAGEMENT (INCLUDING PEDIGREE
MA INTENA NCE)

• ASSET RECALL

• SETTING UP LOCAL REUSE PROGRAMS AND REPOSITORIES

• "YEI,i.OW PAGES" FOR REUSE GOODS AND SERVICES

•.¢_tCaCO Ap1_hcaltono

An E . Ca,qqllr,_qB_

TECHNOLOGY INTERESTS
L i ii n

DISTRIBUTED NETWORKING OF REPOSITORIES

INTERCHANGE OF ASSETS AMONG REPOSITORIES

" NO LOSS OF INFORMATION

* DESPITE DIFFERING ORGANIZATION OF REPOSITORIES

CONFIDENCE INDICATORS

• DETAIIJ:.D PF.DIGREF.S OF ASSETS

• CERTIFICATION TECHNIQUES

"SEAMLESS" INTEGRATION WITH LOCAL ENVIRONMENTS

AND REPOSITORIES

i i i ii ,11 ii _ t nt

P. 110

Asset Evaluation

Documented:

Audited:

Validated:

Certified:

Dcscriotion

Offeror attests that information requirements
ale met.

Librarian attests that information requirements
are met and library issues are addressed.

Librarian has examined the software

engineering assetand found no errors or
inconsistences.

Librarian performed independent repeatable
evaluation relative to published protocol.

,,,_c,m, lr_'+e,,_l, plJ_c,,Im'o, el_ --

Phased Inspections

I
i

+
7

P. 111

NTSC Reuse Initiative

• Naval TrainingSystem Center

• Adaptationof STARS Technology

• Reuse LibraryDevelopment

• FlightSimulationDomain Analysis

• AssistinAsset Moderization

• Develop Reuse SoftwareAssessment Tool

ASSET Business Plan

 dm,ommy.m

Assess current understanding of software reuse technologies,
benefits, and requirements within the organizations surveyed, and
their commitment to integrating software reuse into their software

development process.

BusinessAnalysis

Analyzebusinessmodels todeterminethebestapproach tomanage a

softwarereuselibrary.

_uaJlr,n._ita

Use business and market analyses to describe the transition from
government funding to self-sustaining operations.

J_

,_)-.a),=_¢ Ca,-,ma,'ae, M
P_ 112

ASSET LONG RANGE PLANNING
INFRASTRUCTURE

SHORT TERM
1992

MEDIUM TERM

1993- 1994

LONG TERM

>_.1995

Implement prelim

yellow pages

Install advance

library mech.

Implement RIG
yellow pages

Experimental
interconnection

(CARDS,AdaNET)

Interconnect

multi-library

Local Security Network Security

Survey Existing
legal Work

Formulate

basis for industry

Survey cicctronic
commerce

Formulate
basis

Interoperability

Interoperability
security

ASSET LONG RANGE PLANNING
PRODUCTS & SERVICES

SHORT TERM
1992

MEDIUMTERM

I_3-I_4

LONG TERM
_1_5

STARS CDRLs

STARS BB

STARS NO

STARS Products

Other

Program Specific
Products & Services

Consulting Services

Set up local libraries

Cross domain components

Standards & bindings

Reuse technology tools

Reuse Library
Services

p. 113

ASSET LONG RANGE PLANNING
MARKET DEVELOPMENT

SHORT TERM
1992

MEDIUM TERM
1993- 1994

LONG TERM

> 1995

Quantified market

analysis & business

plan

Identify & have pilot

supply agreements
(commerical & gov't)

Transition to fee

for service

operation

Marketing force

separate balance

sheet, P&L

Some industrial

supply agreements

Some gov't supply

agreements

Self-sufficient

operation

Customer base

Supplier base

•4,_ _ Caqm,9,

RELATED EFFORTS

RIG - REUSE LIBRARY INTEROPERABILITY GROUP

CARDS - CENTRAL ARCHIVE FOR REUSABLE DEFENSE

SOFTWARE

AdaNET

STARS

._v l'_W._,o_,J •_ d_'.t,,u'In.mmw

P. 114

. . =,. .L_ -

pplicaltonsinternational Corpor_lion

Re-Engineering With Reuse
DEFINITION

A process of software analysis and development that lakes as il)JI2Ul:

• Software artifacts from a _XIIgY-L_t_,
• Domain Knowledge (Vocabulary, Taxonomies, ModeL_, Slandards)
• Reuse Library
• New Requirements (optional)

For the purpose of producing as _1_:

• _ of higher quality,
• Updated Domain Knowledge,
• New Reusable Assels.

Target System

New Domain Knewiedge

New Assets

ReusableAmets

115

Re-Engineering
PROCESS (Cemdne4)

SAIC's Doiuln-mnlitive. reuse-orientedIOImmc'h to Re-engineeringemcientlyproducts modernized(target) systems
fra e_tt_qg (Lepcy) a_ems with b},.pr_lucu eom_ing ol reu_ble assetsand pers_enl domainknowledge.

wII1|

P. 116

• , r

Phased Inspections

Rigorous Rigorous
Spe_fic Specific
i_lity Quality
Goal Ooal

SlngleImpectlon
P,h_,

I I
I

i i i

Impecllm Support Toolmt

_ - _Single InSlx_lion Phlse

!

I
I

IH b-

U

NTSC Reuse Initiative

• Naval Training System Center

• Adaptation of STARS Technology

• Reuse l.Jbrary Development

• Flight Simulation Domain Analysis

• Assist in Asset Moderization

• Develop Reuse Software Assessment Tool

P. if7

_¢ience Applicationsinlernalionai Curporalion

Re-Engineering With Reuse
DEFINITION

A process of software analysis and development that takes as]lll_tI:

• Software artifacts from a [,r,gag.y__.m,
• Domain Knowledge (Vocabulary, Taxonomies, Models, Standards)
• Reuse Library
• New Requirements (optional)

For the purpose of producing as 0.11gllkl1:

• _ of higher quality,
• Updated Domain Knowledge,
• New Reusable Assets.

Target System

New Domain Knowledge

Lqscy System

New Am

Reusable AnWts

_Ncicnct AppitcsthmsImema_lemadC,wpcw____u_•

Re-Engineering
PROCI_qS (C_ut/mnd)

SAlC*s_i_, mm.cctm_ mmntdutoItt-cqimttr_ emci_ly p_4_ _ (tnrgt¢)systems
fromundodq(Lqgm_)syntom_w4tluby-pnndugts¢mktlqg od'rumaml_m m perdotmld_ _

i i ! Ill II

*JlWqq_4k._l_,¢

P. 118

F Form Approved
REPORT DOCUMENTATION PAGE OMBno oio4-o,a8

_|athertnq and _alhi_inlnq the d&_a needed. _nd comptehnq ,tncl _evne_inq the colle_'_lon Or inT@rm_Iiorl "Den° (ot_met'11$ i*_afalt_cj t_l$ our°eft _ttm&te o¢ &ny otTler &_ ot thJ,
q c)_l_CtiOf_ _)f nf_toqma_Iorl, _ncludln(j Suq(_e'$|lOn_ tot r_:lucin_] lhi_, Oufd_n ,o Wa,.h*nqton Headclua,'_er, (,erwce_, D_re_orate vof Fnforf_&[lOn Ol_ratlor_ &l_ RelDof1$, 1_ I_ Jeffer$orl

D&vJ$t_qhwaV _,u,'e 1_04 Arhnqton. VA 2220_1302. and to th_OffliP of Mana(_emen, and BudgeL Paperwork Reduction Pro_ect (0704-0188)_W_mgtOn. OC _0_03.

_|. AGENCY USE ONI_Y (Le'ave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1993 Conference Publication
4. TITLE AND SUBTi-TLE S. FUNDUWG NUMBERS

A NASA-Wide Approach Toward Cost-Effective, High-Quality,
Software Through Reuse WU 505-6_-i0-02

6. AUTHOR(S)

Ch_rlotte O. Scheper and Kathryn A. Smith, Editors

7.PERFORMINGORGANIZATIONNAmE(S'iAND AdD'RESS(ES) '" 8.PERFORMINGORGANUZATOON
REPORT NUMBER

NASA Langley Research Center Research Trianqle Institut.=
Hampton, VA 23681-0001 Research Triangle Park,

North Carolina 27709

9. SPONSORING / MONITORING AGI:NCY NAME(S) AND ADDRESS(ES') ' 10. SPONSORING / MONITOI_I'I_IG

AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA CP-I0115

11. SUPPLEMENTARY NOTES

Charlotte O. Scheper: Research Triangle Institute, Research Triangle Park, NC
Kathryn A. Smith: Langley Research Center, Hampton, VA

12a. DISTRIBUTION/#,VAILABILITY STATEMENT" 12b. OlSTRIBUI'ION CODE

Unclassified - Unlimited

Subject Category 61

"t3. ABSTRACT (_fmximum 200 wor_)

NASA Langley Research Center sponsored the second Workshop on NASA Research in
Software Reuse on May 5-6, 1992 at the Research Triangle Park, North Carolina.

The workshop was hosted by the Resarch Triangle Insitute. Participants came from

the three NASA centers, four NASA contractor companies, two research institutes
and the Air Force's Rome Laboratory. The purpose of the workshop was to exchange

information on software reuse tool development, particularly with respect to tool

needs, requirements, and effectiveness. The participants presented the software
reuseactivitiesand tools being developed and used by their individual centers and

programs. These programs address a wide range of reuse issues. The group also

developed a mission and goals for software reuse within NASA. This publication

summarizes the presentations and the issues discussed during the workshop.

ii i= i

_4.'_d_UECTTERMS

software reuse, software development, software upositories,
software libraries

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

unclassified unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

15. NUMBER OF PAGES

124
1(;. PRICE CODE'

A06
20. LII_I_I_rATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pr_rtbed 1_ AN_t Std Z_g-t§

298-102

